首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Excision of the Candystripe1 transposon from a hyper-mutable Y1-cs allele shows that the sorghumY1 gene controls the biosynthesis of both 3-deoxyanthocyanidin phytoalexins and phlobaphene pigments
Authors:Surinder Chopra  Amanda Gevens  Catherine Svabek  Karl V Wood  Thomas Peterson  Ralph L Nicholson
Institution:a Department of Crop & Soil Science, Pennsylvania State University, University Park, PA, 16802, U.S.A.;b Department of Botany & Plant Pathology, Purdue University, West Lafayette, IN, 47907, U.S.A.;c Department of Chemistry, Purdue University, West Lafayette, IN, 47907, U.S.A.;d Department of Zoology & Genetics, Iowa State University, Ames, IA, 50010, U.S.A.
Abstract:The 3-deoxyanthocyanidin phytoalexins produced in sorghum leaves in response to Colletotrichum sublineolum have chemical structure similarities to the 3-deoxy flavonoids that are precursors of phlobaphene pigments. Phlobaphenes are commonly observed in the pericarp of mature sorghum grains, while synthesis of 3-deoxyanthocyanidin phytoalexins is a site-specific response to infection with C. sublineolum. We have taken a genetic approach to investigate the possible overlap between the two sub-branches of flavonoid biosynthesis in sorghum that lead to phlobaphenes and 3-deoxyanthocyanidin phytoalexins. A sorghum line with a functional y1 gene synthesizes 3-deoxyanthocyanidins as well as phlobaphenes. However, a progenitor line with the mutable Y1-candystripe (Y1-cs) allele shows variable levels of biosynthesis of these compounds. The Y1-cs allele carries a copy of the Candystripe1 (Cs1) transposable element in the y1 gene. We demonstrate here that the variability in the expression of 3-deoxyanthocyanidins produced in individual mesocotyls of hyper-mutable Y1-cs plants is a function of the activity of the y1 gene. TheCs1 insertion in the Y1-cs allele blocks y1 function, while excision of Cs1 out of they1 locus restores the gene to a functional state. The combined molecular and biochemical characterization of sibling plants confirms that the allelic state of the y1 gene is completely correlated with the production of phytoalexins in response to fungal infection. These results provide support for the idea that the y1 gene regulates the biosynthesis of both 3-deoxyanthocyanidin phytoalexins and phlobaphene pigments in sorghum.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号