首页 | 本学科首页   官方微博 | 高级检索  
     

基于光谱和形状特征的水稻扫描叶片氮素营养诊断
引用本文:顾清,邓劲松,陆超,石媛媛,王珂,沈掌泉. 基于光谱和形状特征的水稻扫描叶片氮素营养诊断[J]. 农业机械学报, 2012, 43(8): 170-174,159
作者姓名:顾清  邓劲松  陆超  石媛媛  王珂  沈掌泉
作者单位:1. 浙江大学污染环境修复与生态健康教育部重点实验室,杭州,310058
2. 百色市烟草公司,百色,533000
基金项目:国家自然科学基金资助项目(31172023、30800703)和国家高技术研究发展计划(863计划)资助项目(2006AA10Z204)
摘    要:使用扫描仪获取水稻叶片图像,综合运用数字图像处理技术、参数优选和分类方法,研究了不同氮素水平水稻叶片的光谱和形状特征,并进行了氮营养的诊断与识别。研究利用面向对象的分类方法提取叶尖部位的黄化面积比例,指数回归分析结果显示此参数与叶片氮含量具有很高的相关性(R2=0.863)。提取整叶和叶尖的颜色参数并分别与叶片氮含量进行指数回归分析,发现叶尖部位的颜色特征能更好地反映叶片的氮素营养状况。采用CfsSubsetEval和Scatter search相结合方法对特征进行约简与优化,根据选择结果结合支持向量机方法进行模式识别。精度检验结果显示该方法对缺氮和正常叶片的正确识别率较高,随氮素水平的升高,正确识别率降低,对过量水平的正确识别率较低,叶面积在缺氮和正常模式下能对识别起到很好的辅助作用。

关 键 词:水稻  图像  氮素  光谱特征  形状特征  模式识别

Diagnosis of Rice Nitrogen Nutrition Based on Spectral and Shape Characteristics of Scanning Leaves
Gu Qing , Deng Jinsong , Lu Chao , Shi Yuanyuan , Wang Ke , Shen Zhangquan. Diagnosis of Rice Nitrogen Nutrition Based on Spectral and Shape Characteristics of Scanning Leaves[J]. Transactions of the Chinese Society for Agricultural Machinery, 2012, 43(8): 170-174,159
Authors:Gu Qing    Deng Jinsong    Lu Chao    Shi Yuanyuan    Wang Ke    Shen Zhangquan
Affiliation:Zhejiang University;Zhejiang University;Zhejiang University;Baise Tobacco Company;Zhejiang University;Zhejiang University
Abstract:The leaves of rice were captured by scanner.Integrated method combining digital image processing,parameter optimization and classification was used to explore leaves spectral and shape characteristics which were adopted to diagnose and recognize rice nitrogen nutrition.Proportion of etiolated area in the tip of leaf was extracted by method of object-oriented classification.The results of exponential regression analysis showed high correlation between tip etiolated area proportion and leaf nitrogen concentration(R2=0.863).The color indices of tip as well as whole leaves were extracted and exponential regression analysis with leaf nitrogen concentration was made,which illustrated the better performance of representation of rice nitrogen nutrition with tip information.Optimal selection of subset by means of CfsSubsetEval and Scatter search combined with support vector machine were used for pattern recognition.The result of accuracy assessment indicated that nitrogen deficiency and healthy leaves could be easily recognized and the accuracy descended with the improvement of nitrogen treatment.The accuracy of excessive nitrogen nutrition status was low.The leaf area could be a favorable assistant for recognition under deficient and healthy status.
Keywords:Rice   Image   Nitrogen   Spectral feature   Shape feature   Pattern recognition
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《农业机械学报》浏览原始摘要信息
点击此处可从《农业机械学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号