首页 | 本学科首页   官方微博 | 高级检索  
     

大豆豆荚炭疽病严重度的光谱检测
引用本文:冯雷,陈双双,冯斌,何勇,楼兵干. 大豆豆荚炭疽病严重度的光谱检测[J]. 农业机械学报, 2012, 43(8): 175-179,159
作者姓名:冯雷  陈双双  冯斌  何勇  楼兵干
作者单位:1. 浙江大学生物系统工程与食品科学学院,杭州,310058
2. 全国农业展览馆,北京,100026
3. 浙江大学生物技术研究所,杭州,310058
基金项目:国家高技术研究发展计划(863计划)资助项目(2011AA100705)、“十二五”国家科技支撑计划资助项目(2011BAD21B04)、国家自然科学基金资助项目(61075017、60605011)、浙江省科技厅重点农业资助项目(2006C22022)、浙江省重大科技专项重点农业资助项目(2009C12002)和浙江省自然科学基金资助项目(Y5090044)
摘    要:利用可见/近红外光谱技术对大豆豆荚炭疽病严重度进行检测。分别采用主成分分析法(PCA)结合反向传输人工神经网络(BPNN)和连续投影算法(SPA)结合BPNN 2种组合模型进行分析预测。利用SPA的数据压缩功能和BPNN的学习预测能力实现对大豆豆荚炭疽病严重度的检测。以样本检测的准确率作为模型评价指标。实验结果显示SPA-BPNN的检测准确率最高,为90%。研究表明,SPA能够有效地进行波长选择,使BPNN模型获得满意的检测率。

关 键 词:大豆  可见/近红外光谱  连续投影算法  反向传输人工神经网络  主成分分析  偏最小二乘法

Spectral Detection on Disease Severity of Soybean Pod Anthracnose
Feng Lei,Chen Shuangshuang,Feng Bin,He Yong and Lou Binggan. Spectral Detection on Disease Severity of Soybean Pod Anthracnose[J]. Transactions of the Chinese Society for Agricultural Machinery, 2012, 43(8): 175-179,159
Authors:Feng Lei  Chen Shuangshuang  Feng Bin  He Yong  Lou Binggan
Affiliation:Zhejiang University;Zhejiang University;National Agriculture Exhibition Center;Zhejiang University;Zhejiang University
Abstract:Visible and near infrared reflectance(Vis/NIR) spectroscopy technique was applied to detect the disease severity of soybean pods anthracnose.Principal component analysis(PCA) combined with back propagation neural network(BPNN) and successive projections algorithm(SPA) combined with BPNN were used as two methods to analyze and prediction of the disease severity of soybean pods anthracnose.Data compression of SPA and learning ability of BPNN was used to achieve the detection of anthracnose severity on soybean pods.The accurate rate of identification was used to evaluate the model.The results of experiment showed that SPA-BPNN was the better calibration model and the accurate rate of detection was 90%.According to the results,SPA was a powerful way for the selection of effective wavelengths,and BPNN model could obtain the accurate detection.
Keywords:Soybean   Vis/NIR spectroscopy   Successive projections algorithm   Back propagation neural network   Principal component analysis   Partial least squares
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《农业机械学报》浏览原始摘要信息
点击此处可从《农业机械学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号