首页 | 本学科首页   官方微博 | 高级检索  
     

匹配点云结合HSI色彩分量的无人机RGB影像信息提取方法
引用本文:杨栩, 朱大明, 杨润书, 左小清, 谢文斌, 付志涛. 匹配点云结合HSI色彩分量的无人机RGB影像信息提取方法[J]. 农业工程学报, 2021, 37(22): 295-301. DOI: 10.11975/j.issn.1002-6819.2021.22.034
作者姓名:杨栩  朱大明  杨润书  左小清  谢文斌  付志涛
作者单位:1.昆明理工大学国土资源工程学院,昆明 650093;2.云南省地矿测绘院,昆明 650217
基金项目:国家自然科学基金(41961053)
摘    要:无人机通常搭载可见光波段传感器获取红-绿-蓝(Red-Green-Blue,RGB)影像,由于无人机RGB影像波段较少,影像的地物信息提取存在一定难度.该研究提出了一种匹配点云结合色调-饱和度-亮度(Hue-Saturation-Intensity,HSI)空间色彩分量的无人机RGB影像信息提取方法.首先以饱和度分量和...

关 键 词:无人机  遥感  光谱分析  匹配点云  RGB影像  HSI颜色空间  信息提取
收稿时间:2020-11-02
修稿时间:2021-01-04

Method for extracting UAV RGB image information based on matching point cloud and HSI color component
Yang Xu, Zhu Daming, Yang Runshu, Zuo Xiaoqing, Xie Wenbin, Fu Zhitao. Method for extracting UAV RGB image information based on matching point cloud and HSI color component[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2021, 37(22): 295-301. DOI: 10.11975/j.issn.1002-6819.2021.22.034
Authors:Yang Xu  Zhu Daming  Yang Runshu  Zuo Xiaoqing  Xie Wenbin  Fu Zhitao
Affiliation:1.College of Land and Resources Engineering, Kunming University of Science and Technology, Kunming 650031, China;2.Yunnan Geological Surveying and Mapping Institute, Kunming 650217, China
Abstract:Abstract: Unmanned Aerial Vehicle (UAV) remote sensing can be widely used to capture large-scale high overlapping and high spatial resolution images from the ground in a low-cost way. However, the UAV Red-Green-Blue (RGB) images are usually obtained, because the UAV sensors can only contain the wavebands with the visible light range, such as the red, green, and blue. It is difficult to extract the feature information from the UAV RGB images because of the fewer wavebands. Taking the UAV RGB orthophoto image as the research object, an image extraction was proposed to integrate the point cloud matching with the Hue-Saturation-Intensity (HSI) color component. Firstly, the high overlapping ground images were acquired by UAV, thereby constructing the point cloud matching using dense matching, where a digital surface model was generated. Then, the ground points and non-ground points in the study area were obtained by a cloth simulation filtering. Specifically, the ground points were interpolated to generate the digital elevation model. As such, a normalized digital surface model was obtained via the difference between the digital surface model and digital elevation model. Secondly, a saturation-red ratio index was established to extract the bare land using the color components of HSI color space and visible light bands. A bare land extraction was then carried out to verify the model. Thirdly, the expansion index was constructed by multiplying the formula of saturation-red ratio index by the standard deviation of the red band to extract the water with the sediment. Finally, two models and three indexes were achieved to classify the UAV RGB orthophoto images in the study area, including the digital elevation model, the normalized digital surface model, the visible-band difference vegetation index, the saturation-red ratio index, and the expansion index. Afterwards, an experiment was then carried out to verify the extraction model. The results showed that the saturation-red ratio index presented a higher accuracy in the bare land extraction from the UAV RGB images. The normalized digital surface model performed better to obtain the key feature that distinguished from the trees and grasslands using the matching of point cloud interpolation. Furthermore, the river and bare land were successfully extracted, using the saturation-red ratio and the expansion index under the HSI color components, while the digital elevation model features that obtained from the point cloud matching. The overall accuracy of the rule-based classification was 91.11%, where the Kappa coefficient was 0.895. In the classification, the highest producer''s accuracy and user''s accuracy were the buildings and rivers, which reached 96.25% and 99.15%, respectively. Moreover, there was an outstanding elevation difference in the high-precision digital elevation model, digital surface model, and normalized digital surface model. Additionally, the saturation-red ratio and expansion indexes were composed of the visible light band and the color component of saturation, particularly for the extraction of bare land and sand water. Consequently, it can be feasible to combine the point cloud matching and the color components of the HSI color space in the extraction of UAV RGB orthophoto image information.
Keywords:UAV   remote sensing   spectrum analysis   matching point cloud   RGB image   HSI color space   information extraction
本文献已被 万方数据 等数据库收录!
点击此处可从《农业工程学报》浏览原始摘要信息
点击此处可从《农业工程学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号