首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Effects of soil acidity and phosphorus on the yield and chemical composition of tall fescue
Abstract:Abstract

Tall fescue (Festuca arundinacea) is assuming increasing importance as a pasture species in South Africa. Many of the soils on which fescue is grown are inherently high in exchangeable Al and are characterized by high P‐immobilization capacities. The responses of fescue to dolomitic lime and P were examined in a factorial field trial on a red clay (Kandiustalfic Eustrustox) having a pH(KCl) and acid saturation 100(Al+H)/(Al+H+Ca+Mg+K)] in the unlimed state of 4.1 and 48%, respectively. A significant, though very limited, dry‐matter yield response to lime was evident (yields in the absence of lime were approximately 80% of the yields obtained at high lime levels). This pattern in the response to lime remained consistent over the three seasons of experimentation, despite soil acidity levels being substantially increased through the periodic use of ammonium sulphate as the N source in the trial. A significant response to P was evident at the first harvest after establishment; thereafter, P treatments had no effect on yield. The lime and P response data obtained in this investigation indicate that tall fescue is much more tolerant of soil acidity and has substantially lower soil P requirements than other important crop and pasture species in this country, such as maize (Zea mays) and Italian ryegrass (Lolium multiflorum). Lime significantly increased herbage Mg levels yet, in general, did not influence Ca levels in the herbage. Concentrations of Mg in the herbage exceeded Ca concentrations at all lime rates. Luxury uptake of K resulted in the K/(Ca+Mg) equivalents ratio in the herbage frequently exceeding the tetany hazard threshold of 2.2.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号