首页 | 本学科首页   官方微博 | 高级检索  
     检索      

氢还原竖炉的模拟分析
引用本文:王成善,时艳文,李丹丹,冯鹏飞,穆小静.氢还原竖炉的模拟分析[J].保鲜与加工,2016(4):57-66.
作者姓名:王成善  时艳文  李丹丹  冯鹏飞  穆小静
作者单位:重庆大学材料科学与工程学院, 重庆 400044;重庆大学重庆市冶金工程重点实验室, 重庆 400044,重庆大学材料科学与工程学院, 重庆 400044,重庆大学材料科学与工程学院, 重庆 400044,重庆大学材料科学与工程学院, 重庆 400044,重庆大学化学化工学院, 重庆 400044
基金项目:国家自然科学基金资助项目(50704040);重庆市自然科学基金资助项目(CSTC2009BB4197)。
摘    要:利用一组物料、热量守衡式及其他有关约束关系,建立了氢还原竖炉模拟模型,可定量考察消耗量、生成量和氮气、CO兑入成分、DRI金属化率、入炉煤气温度等的关系。模拟结果表明:兑入CO可使入炉煤气量从纯氢还原的1650 N·m3左右下降到1200 N·m3左右;当CO和H2的体积之比V(CO)/V(H2)约为0.6时,氮气兑入量约为0,竖炉能量利用最佳;当V(CO)/V(H2)体积比为0.3时,最佳氮气兑入成分约为11%;纯氢还原最佳氮气兑入成分约为25%;兑入氮气可以减少入炉氢气的量,但不能减少入炉气体的总量。对氢还原竖炉模拟结果可为其工艺设计、操作和节能等提供参考信息。

关 键 词:DRI  氢还原竖炉  氮气兑入  CO兑入  能量利用
收稿时间:2016/1/5 0:00:00

Simulation analysis on hydrogen reduction shaft furnace
WANG Chengshan,SHI Yanwen,LI Dandan,FENG Pengfei and MU Xiaojing.Simulation analysis on hydrogen reduction shaft furnace[J].Storage & Process,2016(4):57-66.
Authors:WANG Chengshan  SHI Yanwen  LI Dandan  FENG Pengfei and MU Xiaojing
Institution:School of Materials Science and Engineering, Chongqing University, Chongqing 400044, P. R. China;Chongqing Provincial Key Laboratory of Metallurgical Engineering, Chongqing University, Chongqing 400044, P. R. China,School of Materials Science and Engineering, Chongqing University, Chongqing 400044, P. R. China,School of Materials Science and Engineering, Chongqing University, Chongqing 400044, P. R. China,School of Materials Science and Engineering, Chongqing University, Chongqing 400044, P. R. China and School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, P. R. China
Abstract:A mathematical model for ore reduction mainly by H2 in shaft furnace was established by a set of conservation equations of materials and heat, and other constraint conditions. All consumptions and productions could be calculated if the composition of N2, the value of V(CO)/V(H2), the metallization ratio of DRI, the temperature of input gas, etc. were given. It shows that the input gas can be reduced from 1650 N·3 for H2 reduction to 1200 N·m3 by CO addition. When the volume ration of CO to H2 V(CO)/V(H2)was 0.6, the energy utilization ratio of shaft furnace was maximum without N2 addition; when V(CO)/V(H2)=0.3, the optimum composition of N2 was 11%; when V(CO)/V(H2)=0, the optimum composition of N2 was 25%. The N2 addition may result in H2 consumption, but could not reduce the total input gas. The simulation will provide reference to process design, operation and energy saving.
Keywords:DRI  hydrogen reduction shaft furnace  N2addition  CO addition  energy utilization
点击此处可从《保鲜与加工》浏览原始摘要信息
点击此处可从《保鲜与加工》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号