首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Pedogenic processes of placic and spodic horizons in subtropical subalpine forest soils with contrasting textures
Authors:S H Jien  C W Pai  Y Iizuka  C Y Chiu
Institution:1. Department of Soil and Water Conservation, National Pingtung University of Science and Technology, , Pingtung, 912‐01 Taiwan;2. The Experimental Forest, College of Bio‐Resource and Agriculture, National Taiwan University, , Nantou, 557‐43 Taiwan;3. Institute of Earth Sciences, Academia Sinica, , Taipei, 115‐29 Taiwan;4. Biodiversity Research Center, Academia Sinica, , Taipei, 115‐29 Taiwan
Abstract:Placic (Bsm) and spodic (Bhs) horizons are common in subalpine or alpine forest soils in Taiwan. Bsm horizons are found more usually in finer textured soils than those with Bhs horizons. To understand the different formation processes in Bsm and Bhs horizons in a humid subtropical ecosystem, we identified micro‐morphological features by using scanning electron microscopy (SEM), energy dispersive spectrometry (EDS) and electron probe micro‐analysis (EPMA), and determined the physiochemical properties by chemical extractions and clay mineralogy. The study included four pedons with well‐developed Bsm horizons from our previous study and four with well‐developed Bhs horizons at other sites. Both sites were in subtropical mountain forests with similar climate, topography and general geology but over regoliths with distinctly different textures. Micro‐morphology revealed a vughy (small cavities lined with in‐washed materials) microstructure in Bsm horizons but a granular structure with bridge microstructures between coarse grains in Bhs horizons. Chemical analysis revealed more free pedogenic iron (Fed) and aluminium (Ald) in Bsm than in Bhs horizons, but more organically complexed Al (Alp) in Bhs horizons. Energy dispersive spectrometry revealed predominant Fe, oxygen (O) and carbon (C) in the matrix of the Bsm horizons, whereas Al, silicon (Si) and C were the major elements of interstitial materials in Bhs horizons. Polarizing microscopy and EPMA spectra confirmed the illuvial nature of organic Al complexes in Bhs horizons. The transformation of clay minerals showed more intense podzolization in Bhs horizons than in Bsm horizons. The different formation mechanisms in Bsm and Bhs horizons result from contrasting texture; redox processes are predominant in Bsm horizons because of the clayey texture whereas podzolization is predominant in sandy Bhs horizons.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号