首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Phosphorus source,organic matter,and arbuscular mycorrhiza effects on growth and mineral acquisition of chickpea grown in acidic soil
Authors:G A Alloush  S K Zeto  R B Clark
Institution:1. US Department of Agriculture, Agricultural Research Service (USDA‐ARS) , Appalachian Farming System Research Center , 1224 Airport Road, Beaver, WV, 25813–9423;2. Visiting Fulbright Scholar, Department of Soil Science and Land Reclamation , Tishreen University , Lattakia, Syria E-mail: galloush@afsrc.ars.usda.gov
Abstract:Abstract

Plants grown in acidic soil usually require relatively high amounts of available phosphorus (P) to optimize growth and productivity, and sources of available P are often added to meet these requirements. Phosphorus may also be made available at relatively high rates in native soil when roots are colonized with arbuscular mycorrhizal fungi (AMF). Addition of P to soil usually reduces root‐AMF colonization and decreases beneficial effects ofAMF to plants. In glasshouse experiments, soil treatments of P 0 P (Control), 50 mg soluble‐P kg?1 as KH2PO4 (SP), and 200 mg P kg?1 as phosphate rock (PR)], organic matter (OM) at 12.5 g kg?1, AMF (Glomus darum), and various combinations of these (OM+SP, OM+PR, AMF+SP, AMF+PR, AMF+OM, AMF+OM+SP, and AMF+OM+PR) were added to steam treated acidic Lily soil (Typic Hapludult, pHw=5.8) to determine treatment effects on growth and mineral acquisition by chickpea (Cicer areitinum L.). The various treatment applications increased shoot dry matter (DM) above the Control, but not root DM. Percentage AMF‐root colonization increased 2‐fold or more when mycorrhizal plants were grown with AMF, OM+SP, and OM+PR. Regardless of P source, plant acquisition of P, sulfur (S), magnesium (Mg), calcium (Ca), and potassium (K) was enhanced compared to the Control, and mineral enhancement was greater in PR compared to SP plants. Mycorrhizal plants also had enhanced acquisition of macronutrients. OM+SP and OM+PR enhanced acquisition of P, K, and Mg, but not Ca. Concentrations of Fe, Mn, Cu, and Al were generally lower than Controls in SP, RP, AMF+PR, AMF+SP, and OM plants, and mycorrhizal plants especially had enhanced micronutrients. Relative agronomic effectiveness values for shoot DM and shoot P, Ca, and Mg contents were considerably higher for PR, including OM+PR, AMF+PR, and AMF+OM+PR, than for SP. PR and OM applications to AMF plants are low‐cost attractive and ecologically sound alternatives to intensive use of P fertilizers for crops grown in acidic soils.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号