首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Sulfur Alleviates Growth Inhibition and Oxidative Stress Caused by Cadmium Toxicity in Rice
Authors:Muhammad Jaffar Hassan  Ziqiang Wang  Guoping Zhang
Institution:Agronomy Department , Huajiachi Campus, Zhejiang University , Hangzhou, China
Abstract:A hydroponic experiment was conducted to investigate the effect of sulfur (S) on growth inhibition and oxidative stress caused by Cd2+ toxicity, using two rice cultivars with different grain Cd2+ content. Treatments consisted of factorial arrangement of three S levels (0.2, 0.4, and 0.8 mmol), two cadmium (Cd) levels (0 and 1 μ mol), and two rice cultivars (‘Bing 97252,’ a cultivar with low grain Cd2+ content, and ‘Xiushui 63,’ a cultivar with high grain Cd2+ content). The results showed that Cd2+ addition in the medium generally increased Cd2+ and malondialdehyde (MDA) content in both roots and shoots; the increases were more pronounced in ‘Xuishui 63’ than in ‘Bing 97252.’ Dramatic reductions in growth parameters, including plant height, root and shoot weight, tillers per plant, chlorophyll content, and net photosynthetic rate were found in the plants exposed to Cd stress relative to the plants without Cd2+ treatment. ‘Xiushui 63’ showed more sensitivity than ‘Bing 97252’ under Cd2+ exposure. In comparison with the lower S level (0.2 mmol), the higher S levels (0.4 and 0.6 mmol) helped alleviate Cd toxicity, characterized by a significant increase in growth parameters, and a decrease in Cd2+ and MDA content in both roots and shoots. In addition, superoxide dismutase (SOD) activity in the plants varied among tissues, cultivars, and Cd treatments. High Cd2+ and MDA content was consistently accompanied by higher SOD activity, and higher S levels caused a marked increase in glutathione content and a reduction in SOD activity, indicating a positive effect of S in alleviating oxidative stress.
Keywords:cadmium  growth  oxidative stress  rice (Oryza sativa L  )  sulfur
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号