首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Multi-electrode 3D resistivity imaging of alfalfa root zone
Authors:Mariana Amato  Giovanni Bitella  Roberta Rossi  Jos A Gmez  Stella Lovelli  Joo J Ferreira Gomes
Institution:Mariana Amato, Giovanni Bitella, Roberta Rossi, José A. Gómez, Stella Lovelli,João J. Ferreira Gomes
Abstract:Information on the amount and spatial distribution of plant roots is increasingly needed for understanding and managing crop behaviour. Soil electrical resistivity (ρ) tomography has been proposed as a non-destructive method for root biomass quantification and mapping in trees but evidence is needed on the applicability of the technique at low root density and in herbaceous plants.We produced high-resolution 3D DC soil resistivity tomograms in containers with bare soil (B), and alfalfa (Medicago sativa L.) (A1) on a silt loam soil, and alfalfa on a loam (A2). Root biomass (RMD), root length density (RLD), soil electrical conductivity (EC) and water content (θ) were measured destructively.The pattern of soil resistivity matched the spatial distribution of θ in bare soil and of RMD in rooted soil. Univariate linear relations were found between ρ and θ in bare soil and between ρ, RLD and RMD in rooted soil. Across all data RMD and soil texture (P < 0.01) explained a high proportion of variability in soil resistivity.This allows to conclude that soil resistivity is quantitatively related to root biomass in herbaceous plants even at low root density (biomass < 0.001 Mg m−3), providing a basis for the development of resistivity-founded methods for the non-destructive spatial detection of root mass in situ, but the response in ρ is of the same order of magnitude as the effects of grain size and water content. Therefore in field studies reciprocal masking of low-density roots and other soil features is possible, and the effect of variation in other soil properties should be explicitly addressed.
Keywords:Root  Non-destructive method  Spatial variability  ERT  Soil resistivity  CAT  Plant–  soil imaging
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号