首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Veterinary antibiotics influence trigonelline biosynthesis and plant growth in Arachis hypogaea L.
Authors:Amith R Devireddy  Madhuri A Inupakutika  David Willmon  Prathusha Kakarla  Naveen Puppala
Institution:1. Department of Biology, Eastern New Mexico University, Portales, NM, USA;2. Department of Biological Sciences, University of North Texas, Denton, TX, USA;3. Agricultural Science Center, New Mexico State University, Clovis, NM, USA
Abstract:Antibiotics from various sources such as livestock waste are being accumulated in the soil. The excessive uptake of antimicrobial agents by plants has been a major concern as it is currently unknown how plants respond to the presence of antibiotics in agricultural lands. The objectives were to analyze the alteration of trigonelline (TRG) biosynthesized by plants in response to various antibiotic stresses and to evaluate the ability of peanut (Arachis hypogaea L.) plants to resist the deleterious impacts of antibiotic uptake. Three veterinary antibiotics used in this study were tetracycline, streptomycin sulfate, and chloramphenicol in the concentrations of 2.5 and 5 mg L?1. Mean TRG amounts were 53.4 ± 1.6 and 59.9 ± 1.1 μg·g?1 dry weight (DW) in Spanish as treated with growth chloramphenicol and streptomycin at 2.5 mg·L?1, respectively, and were significantly (p ≤ .05) different compared to the control (40.4 ± 1.6 μg·g?1 DW) of Spanish. Spanish genotype treated with chloramphenicol at 5 mg·L?1 had a mean TRG amount of 41.0 ± 1.0 μg·g?1 DW and improved yield, with the average pod number of 29.6 ± 7.6 and pod weight of 20.1 ± 6.1 g. TRG was continuously biosynthesized and increased under antibiotic stress up to 12.7% at full pod (R4 growth stage) and 139.1% at beginning maturity (R7), but declined 20.2% at the harvest stage (R8) in all combined genotypes when compared with TRG amounts (21.7 ± 0.6 μg·g?1 DW) at the flowering R1 stage.
Keywords:Abiotic stress  antibiotics  Arachis hypogaea L  genotypes  trigonelline
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号