首页 | 本学科首页   官方微博 | 高级检索  
     

改进的模糊优选多目标优化遗传算法及其应用
引用本文:张翔,陈建能,耿玉磊. 改进的模糊优选多目标优化遗传算法及其应用[J]. 福建农林大学学报(自然科学版), 2007, 36(5): 550-552
作者姓名:张翔  陈建能  耿玉磊
作者单位:1. 福建农林大学机电工程学院,福建,福州,350002
2. 浙江大学机械与能源学院,浙江,杭州,310013
摘    要:提出一种改进的模糊优选多目标优化遗传算法.算法采用个体在总群体中的相对优属度作为适应度值,将总群体中的全部个体按子目标函数的数量平均划分为子群体,对每个子群体分配1个子目标函数,以子目标函数值计算子群体中个体的适应度值.2次选择后满足了整体最优的要求,又尽可能地逼近各子目标最优值.经实例计算,效果显著.

关 键 词:多目标优化  遗传算法  模糊优选
文章编号:1671-5470(2007)05-0550-03
修稿时间:2007-06-21

An improved genetic algorithm based on fuzzy evaluation for multiobjective optimization and its application
ZHANG Xiang,CHEN Jian-neng,GENG Yu-lei. An improved genetic algorithm based on fuzzy evaluation for multiobjective optimization and its application[J]. Journal of Fujian Agricultural and Forestry University, 2007, 36(5): 550-552
Authors:ZHANG Xiang  CHEN Jian-neng  GENG Yu-lei
Affiliation:1. College of Mechanical and Electrical Engineering, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China;2. College of Mechanical and Energy Engineering, Zhejiang University, Hangzhou, Zhejiang 310013, China
Abstract:An improved genetic algorithm based on fuzzy evaluation for muhiobjective optimization was proposed. The traditional fitness function has been replaced by fuzzy evaluation function, and the population was subdivided averagely according to the number of sub-object functions, then traditional selection operation was done in subdivision population. After two time selection, the algorithm could obtain optimal multiobject value and sub-object value. Some evaluative examples showed that the results were better.
Keywords:muhiobjectlve optimization   genetic algorithm   fuzzy evaluation
本文献已被 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号