首页 | 本学科首页   官方微博 | 高级检索  
     


Fine-earth translocation by tillage in stony soils in the Guadalentin, south-east Spain: an investigation using caesium-134
Authors:Timothy A. Quine   Gerard Govers   Jean Poesen   Des Walling   Bas van Wesemael  Jose Martinez-Fernandez
Affiliation:

a Department of Geography, University of Exeter, Amory Building, Rennes Drive, Exeter, Devon, EX4 4RJ, UK

b Laboratory for Experimental Geomorphology, Catholic University of Leuven, Redingenstraat 16, 3000 Leuven Belgium; Fund for Scientific Research, Flanders, Belgium

c Department of Geography, University of Middlesex, London, N17 8HR UK

d Departamento de Geografa, University of Murcia, 3001 Murcia, Spain

Abstract:Tillage erosion is increasingly recognised as an important soil erosion process on agricultural land. In view of its potential significance, there is a clear need to broaden the experimental database for the magnitude of tillage erosion to include a range of tillage implements and agricultural environments. The study discussed in this paper sought to address the need for such data by examining tillage erosion by a duckfoot chisel plough in stony soils on steep slopes in a semi-arid environment. Results of the investigation of coarse fraction (rock fragment) translocation by tillage in this environment have been presented elsewhere and the paper focuses on tillage translocation and erosion of the fine earth. Tillage translocation was measured at 10 sites, representing both upslope and downslope tillage by a duckfoot chisel plough on five different slopes, with tangents ranging from 0.02 to 0.41. A fine-earth tracer, comprising fine earth labelled with 134Cs, was introduced into the plough layer before tillage. After a single pass of the plough, incremental samples of plough soil were excavated and sieved to separate the fine earth from the rock fragments. Translocation of the fine-earth tracer was established by analysing the 134Cs content of the samples of fine earth. These data were used to establish translocation distances for each combination of slope and tillage direction. Translocation distances of the fine earth were not significantly different from translocation distances of the coarse fraction. For all sites, except uphill on the 0.41 slope, translocation distances were found to be linearly related to slope tangent. The soil flux due to tillage for each site was calculated using the translocation distance and the mass per unit area of the plough layer. For slopes with tangents <0.25, the relationship between soil flux and tangent was linear and the soil flux coefficient derived was 520–660 kg m−1 per pass. This is much larger than the coefficients found in other studies and this high magnitude is attributed to the non-cohesive nature and high rock fragment content of the soil in this investigation. A second contrast with previous studies was found in non-linearity in the relationship between soil flux and tangent when steeper slopes were included. This was a product of variation in plough depth between the steepest slopes and the remainder of the study area. On the basis of the study it is suggested that an improved understanding of tillage erosion may be obtained by considering the dual processes of tillage detachment (mass per unit area of soil subject to tillage) and tillage displacement (equivalent to translocation distance per pass) in assessing, comparing and modelling tillage translocation. An improved model is proposed that recognises the complexity of soil redistribution by tillage, provides a framework for process-based investigation of the controls on tillage fluxes, and allows identification of potential self-limiting conditions for tillage erosion.
Keywords:Caesium-134   Tillage erosion   Tillage translocation   Tracers   Soil detachment   Soil transport
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号