首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Restoration of inactivation in mutants of Shaker potassium channels by a peptide derived from ShB
Authors:W N Zagotta  T Hoshi  R W Aldrich
Institution:Department of Molecular and Cellular Physiology, Stanford University School of Medicine, CA 94305.
Abstract:Site-directed mutagenesis experiments have suggested a model for the inactivation mechanism of Shaker potassium channels from Drosophila melanogaster. In this model, the first 20 amino acids form a cytoplasmic domain that interacts with the open channel to cause inactivation. The model was tested by the internal application of a synthetic peptide, with the sequence of the first 20 residues of the ShB alternatively spliced variant, to noninactivating mutant channels expressed in Xenopus oocytes. The peptide restored inactivation in a concentration-dependent manner. Like normal inactivation, peptide-induced inactivation was not noticeably voltage-dependent. Trypsin-treated peptide and peptides with sequences derived from the first 20 residues of noninactivating mutants did not restore inactivation. These results support the proposal that inactivation occurs by a cytoplasmic domain that occludes the ion-conducting pore of the channel.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号