首页 | 本学科首页   官方微博 | 高级检索  
     

基于支持向量机的洪水预报模型初
引用本文:梅松,程伟平,刘国华. 基于支持向量机的洪水预报模型初[J]. 中国农村水利水电, 2005, 0(3): 34-36
作者姓名:梅松  程伟平  刘国华
作者单位:1. 浙江大学建筑工程学院,杭州,310027;浙江天健会计师事务所,杭州,310012
2. 浙江大学建筑工程学院,杭州,310027
摘    要:用传统的机器学习方法进行洪水预报建模存在泛化能力难以保障,训练速度慢等一些困难。对统计学习理论和支持向量机的基本内容和核心思想进行了简要的介绍,探讨了基于支持向量机的洪水预报模型的建模方法。通过实例中的应用,该模型显示了泛化能力强,训练速度快,便于建模等优点,有良好的应用前景。

关 键 词:支持向量机  洪水预报  统计学习理论
文章编号:1007-2284(2005)03-0034-03
修稿时间:2004-03-24

Preliminary Discussion on Flood Forecast Model Based on Support Vector Machine
Mei Song,CHENG Wei-ping,LIU Guo-hua. Preliminary Discussion on Flood Forecast Model Based on Support Vector Machine[J]. China Rural Water and Hydropower, 2005, 0(3): 34-36
Authors:Mei Song  CHENG Wei-ping  LIU Guo-hua
Affiliation:MEI Song 1,2,CHENG Wei-ping1,LIU Guo-hua1
Abstract:Traditional learning machine methods like artificial neural networks have the disadvantages of slow training speed, low generalization capability etc. The highlights of statistical learning theory (SLT), the principle and the crucial elements of support vector machine (SVM) were introduced, and the method for flood forecast modeling based on support vector machine was discussed. In case study, the flood forecast model based on SVM exhibited its properties of high generalization capability, fast training, and easy modeling.
Keywords:support vector machine (SVM)  flood forecast  statistical learning theory (SLT)
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《中国农村水利水电》浏览原始摘要信息
点击此处可从《中国农村水利水电》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号