首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Evaluation of partial root-zone drying for potential field use as a deficit irrigation technique in commercial vineyards according to two different pipeline layouts
Authors:Jordi Marsal  Merce Mata  Jesus del Campo  Amadeu Arbones  Xavier Vallverdú  Joan Girona  Natalia Olivo
Institution:(1) Institut de Recerca i Tecnologia Agroalimentaries (IRTA), UdL-IRTA, Irrigation Technology, Av Rovira Roure 191, 25198 Lleida, Spain
Abstract:The use of partial root-drying (PRD) irrigation implies doubling pipelines instead of using a conventional single pipeline. However, pipelines can be spaced a short distance apart (e.g. 1 m) along the vine row (“D” layout) or joined with cable ties and laid as a single pipeline (“S” layout). Pipelines in “S” configuration are laid under the vine row, and in “D” at both sides of the vine row. These two different layouts can change the wetted soil zone and affect grapevine response to irrigation. The focus of this study was therefore on establishing the role of pipeline layout in vine-grape (cv. ‘Tempranillo’) response under semi-arid conditions in which PRD is managed as a deficit irrigation technique. Six irrigation treatments were applied, which resulted from the combination of Control (C, full irrigation), PRD and seasonal sustained deficit irrigation (SSDI), and “S” and “D” pipeline layouts. SSDI and PRD were irrigated to 50% C throughout the irrigation season, and C irrigation was scheduled according to a crop water balance technique. Midday stem water potential (Ψstem) and leaf conductance (gl) indicated that, on the whole, PRD treatments had a slightly higher water status than SSDI treatments, but a substantially lower status than C treatments. Use of the “D” pipeline layout significantly reduced Ψstem in both PRD and SSDI treatments and in some instances for Control conditions, too. Berry yield, vine intercepted radiation, leaf abscisic acid (ABA) and gl were highly correlated with Ψstem. Differences in water status between PRD-S and SSDI-S, according to a sub-surface irrigation test, seemed to be more related to changes in soil evaporation losses and irrigation efficiency than to any intrinsic PRD effect. PRD-S accounted for water savings equivalent to 10% according to the ratio between applied water and grape production for the SSDI-S treatment, whereas PRD-D berry yield was not significantly different from that associated with the SSDI-S treatment. In conclusion, under the growing conditions of this experiment, PRD-S offered the possibility of slightly improving water conservation when irrigation was applied to the soil surface.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号