首页 | 本学科首页   官方微博 | 高级检索  
     


Forest variable estimation using photogrammetric matching of digital aerial images in combination with a high-resolution DEM
Abstract:Abstract

The rapid development in aerial digital cameras in combination with the increased availability of high-resolution Digital Elevation Models (DEMs) provides a renaissance for photogrammetry in forest management planning. Tree height, stem volume, and basal area were estimated for forest stands using canopy height, density, and texture metrics derived from photogrammetric matching of digital aerial images and a high-resolution DEM. The study was conducted at a coniferous hemi-boreal site in southern Sweden. Three different data-sets of digital aerial images were used to test the effects of flight altitude and stereo overlap on an area-based estimation of forest variables. Metrics were calculated for 344 field plots (10 m radius) from point cloud data and used in regression analysis. Stand level accuracy was evaluated using leave-one-out cross validation of 24 stands. For these stands the tree height ranged from 4.8 to 26.9 m (17.8 m mean), stem volume 13.3 to 455 m3 ha?1 (250 m3 ha?1 mean), and basal area from 4.1 to 42.9 m2 ha?1 (27.1 m2 ha?1 mean) with mean stand size of 2.8 ha. The results showed small differences in estimation accuracy of forest variables between the data-sets. The data-set of digital aerial images corresponding to the standard acquisition of the Swedish National Land Survey (Lantmäteriet), showed Root Mean Square Errors (in percent of the surveyed stand mean) of 8.8% for tree height, 13.1% for stem volume and 14.9% for basal area. The results imply that photogrammetric matching of digital aerial images has significant potential for operational use in forestry.
Keywords:Basal area  digital aerial images  digital photogrammetry  forest inventory  laser scanning  stand level  stem volume  tree height
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号