首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Evaluation of alternative measures of pork carcass composition
Authors:Schinckel A P  Wagner J R  Forrest J C  Einstein M E
Institution:Department of Animal Sciences, Purdue University, West Lafayette, IN 47907-1151, USA. aschinck@ansc.purdue.edu
Abstract:Carcass and live measurements of 203 pigs representing seven genetic populations and four target live weights (100, 114, 128, and 152 kg) were used to evaluate alternative measures of carcass composition. Measures of carcass lean (fat tissue-free lean, FFLM; lipid-free soft tissue, LFSTIS; and dissected lean in the four lean cuts, DL), fat (total carcass fat tissue, TOFAT), and lipid mass (soft tissue lipid, STLIP) were evaluated. Overall, LFSTIS was 22.8% greater than FFLM (47.8 vs 38.9 kg) and TOFAT was 30% greater than STLIP (38.5 vs 29.6 kg). The allometric growth coefficients relative to carcass weight were different for the measures: b = 0.776, 0.828, 0.794, 1.37, and 1.49 for FFLM, LFSTIS, DL, TOFAT, and STLIP, respectively. At 90 kg carcass weight, the predicted growth of FFLM, LFSTIS, TOFAT, and STLIP was 0.314, 0.420, 0.553, and 0.446 kg/kg increase in carcass weight. The difference between FFLM and LFSTIS, representing nonlipid components of the carcass fat tissue, was greater for barrows than for gilts (9.2 vs 8.6 kg). Lipid-free soft tissue mass was predicted more accurately from carcass or live animal measurements than FFLM with smaller relative RSD (4.6 vs 6.5% of their mean values). The alternative measures of carcass composition were evaluated as predictors of empty body protein (MTPRO) and lipid (MTLIP) mass. Empty body protein was predicted with similar accuracy (R2 = 0.74 to 0.81) from either DL, FFLM, LFSTIS, or ribbed carcass measurements. Empty body lipid was predicted more accurately from TOFAT (R2 = 0.92) or STLIP (R2 = 0.93) than ribbed carcass measurements (R2 = 0.88). Although the alternative measures of lean mass (LFSTIS vs FFLM) and lipid mass (TOFAT vs STLIP) were highly related to each other (r = 0.93 to 0.98), they had different relative growth rates (allometric coefficients) and thus cannot be predicted as linear functions of the similar alternative variable without significant weight group biases. From the 100- to 152-kg target weight groups, gilts gained 12.9% greater FFLM and 12.1% greater MTPRO but only 4.4% greater LFSTIS than barrows. Fat-free lean mass is more precise as a measure of muscle growth and as a predictor of lysine requirements. Lipid-free soft tissue can be obtained more quickly and predicted more accurately from carcass or live animal measurements.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号