首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Prediction of bending properties for structural glulam using optimized distributions of knot characteristics and laminar MOE
Authors:Jun Jae Lee  Joo Saeng Park  Kwang Mo Kim  Jung Kwon Oh
Institution:(1) College of Agriculture and Life Sciences, Seoul National University, Seoul, 151-742, Korea;(2) Department of Forest Products, Korea Forest Research Institute, Seoul, 130-712, Korea
Abstract:This study established a prediction model for bending properties of glued-laminated timber (glulam) using optimized knot and modulus of elasticity (MOE) distributions of lumber laminate as the main input variables. For this purpose, knot and MOE data were investigated for all pieces of lumber that were prepared for glulam manufacturing, and statistical distributions of knot size, knot number in one lumber, and MOE of each laminate were optimized as distribution functions. These knot and MOE data were used as input variables in the prediction model for bending properties, and were also used in generating virtual glulam using the inverse transform method. Prediction of bending properties for glulam was carried out using the transformed section method, which is partially provided in ASTM D 3737 (Annex A4). Predicted values were compared with those from full-scale four-point bending tests for 60 six-layered glulams with 10 different laminar combinations. Finally, the allowable bending properties of glulam for each specific laminate combination were determined by calculating the fifth percentile of the modulus of rupture and the average modulus of elasticity from virtual test results of more than 1000 virtual glulams. From the results of this study, predicted bending properties for glulam and their distributions could be used for structural design in both allowable stress design and limit state design.
Keywords:Bending properties of glulam  Knot characteristics  Optimized distribution  Inverse transform method  Transformed section method
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号