首页 | 本学科首页   官方微博 | 高级检索  
     

四种客观权重确定方法在粮虫可拓分类中的应用比较
引用本文:张红涛,毛罕平. 四种客观权重确定方法在粮虫可拓分类中的应用比较[J]. 农业工程学报, 2009, 25(1): 132-136
作者姓名:张红涛  毛罕平
作者单位:1. 江苏大学现代农业装备与技术省部共建教育部重点实验室,镇江212013;华北水利水电学院电力学院,郑州450011
2. 江苏大学现代农业装备与技术省部共建教育部重点实验室,镇江,212013
基金项目:国家自然科学基金项目(30871449);江苏大学博士研究生创新基金资助项目
摘    要:储粮害虫的数字特征多,特征之间混合度比较大,可用可拓决策分析来解决其分类问题。在粮虫的可拓分类中,需要自动确定特征的客观权重,以避免传统的专家经验法在确定权重方面所带来的人为因素的影响。该文提出了模糊决策矩阵和均值决策矩阵2种构建决策矩阵的方法。将最大离差法、类间标准差法、CRITIC法和熵值法4种确定客观权重的方法分别应用到粮虫的分类中,并通过基于经典域和节域不同构建方法的2种可拓分类器进行了分析和比较。对粮仓中危害严重的9类粮虫进行了自动分类,结果表明基于模糊决策矩阵的最大离差法权重是粮虫可拓分类的最佳方案,识别率达到93%。

关 键 词:储粮害虫  可拓理论  特征权重  决策矩阵  最大离差法
收稿时间:2007-08-02
修稿时间:2008-09-22

Comparison of four methods for deciding objective weights of features for classifying stored-grain insects based on extension theory
Zhang Hongtao and Mao Hanping. Comparison of four methods for deciding objective weights of features for classifying stored-grain insects based on extension theory[J]. Transactions of the Chinese Society of Agricultural Engineering, 2009, 25(1): 132-136
Authors:Zhang Hongtao and Mao Hanping
Affiliation:1.Key Laboratory of Modern Agricultural Equipment and Technology;Ministry of Education&Jiangsu Province;Jiangsu University;Zhenjiang 212013;China;2.Institute of Electric power;North China Institute of Water Conservancy and Hydroelectric Power;Zhengzhou 450011;China
Abstract:The extension theory can be used to solve the problem of recognition of the stored-grain insects that have many different features with overlapping attributes. It is necessary to determine the objective weights of the features in the classification based on extension theory, avoiding the human factor from the traditional method of expert evaluation. Two methods for constructing the fuzzy decision matrix and the mean decision matrix were put forward. Four methods for deciding objective weights of the features, namely, the methods of maximizing deviations, standard variance between-class, criteria importance through inter-criteria correlation and the entropy, were used to classify the grain-stored insects. These four methods were applied to the two extension-theory classifiers for the stored-grain insects based on two methods for constructing standard and extensional matter-element matrices. The nine species of the stored-grain insects in the grain-storage bin were automatically recognized by the classifier based on the extension theory. The results showed that the maximizing deviation method for objective weights of features based on fuzzy decision matrix was the optimum scheme, and the correct identification ratio reached 93%.
Keywords:stored-grain insects   extension theory   feature weights   decision matrix   method for maximizing deviations
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《农业工程学报》浏览原始摘要信息
点击此处可从《农业工程学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号