首页 | 本学科首页   官方微博 | 高级检索  
     


Analysing soil variation in two dimensions with the discrete wavelet transform
Authors:R. M. Lark ,&   R. Webster
Affiliation:Silsoe Research Institute, Wrest Park, Silsoe, Bedford MK45 4HS, and; Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ, UK
Abstract:Complex spatial variation in soil can be analysed by wavelets into contributions at several scales or resolutions. The first applications were to data recorded at regular intervals in one dimension, i.e. on transects. The theory extends readily to two dimensions, but the application to small sets of gridded data such as one is likely to have from a soil survey requires special adaptation. This paper describes the extension of wavelet theory to two dimensions. The adaptation of the wavelet filters near the limits of a region that was successful in one dimension proved unsuitable in two dimensions. We therefore had to pad the data out symmetrically beyond the limits to minimize edge effects. With the above modifications and Daubechies's wavelet with two vanishing moments the analysis is applied to soil thickness, slope gradient, and direct solar beam radiation at the land surface recorded at 100‐m intervals on a 60 × 101 square grid in south‐west England. The analysis revealed contributions to the variance at several scales and for different directions and correlations between the variables that were not evident in maps of the original data. In particular, it showed how the thickness of the soil increasingly matches the geological structure with increasing dilation of the wavelet, this relationship being local to the strongly aligned outcrops. The analysis reveals a similar pattern in slope gradient, and a negative correlation with soil thickness, most clearly evident at the coarser scales. The solar beam radiation integrates slope gradient and azimuth, and the analysis emphasizes the relations with topography at the various spatial scales and reveals additional effects of aspect on soil thickness.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号