首页 | 本学科首页   官方微博 | 高级检索  
     

基于BP神经网络的信息融合发动机故障诊断的研究
引用本文:杨文选,王琎. 基于BP神经网络的信息融合发动机故障诊断的研究[J]. 农机化研究, 2006, 0(7): 191-192,195
作者姓名:杨文选  王琎
作者单位:西北农林科技大学,机电学院,陕西,杨凌,712100;陕西省农业展览馆,西安,710016
摘    要:为了解决发动机喷油器故障诊断中基于单传感器信息的方法诊断精度低的缺点,在神经网络分析的基础上,提出了一种基于气缸压和、缸盖振动信号和燃油压力等多传感器信息融合的喷油器故障诊断新方法。该方法能有效地提高其故障诊断精度,明显增加了诊断过程的准确性和智能化。

关 键 词:计算机应用  信息融合  应用  发动机  BP网络  故障诊断
文章编号:1003-188X(2006)07-0191-02
收稿时间:2005-07-12
修稿时间:2005-07-12

Study on the Diagnosing for Engine In-cylinder Faults Based on Multi-sensor Information Fusion
YANG Wen-xuan,WANG Jin. Study on the Diagnosing for Engine In-cylinder Faults Based on Multi-sensor Information Fusion[J]. Journal of Agricultural Mechanization Research, 2006, 0(7): 191-192,195
Authors:YANG Wen-xuan  WANG Jin
Abstract:In this article, based on theory of Bp neural network analysis, in order to solve the non-linear and uncertain faults of engine problems, a new in -cylinder faults of engine diagnosis method based on multi-sensor information fusion is presented. Two kinds of signals are sampled, and are analyzed using load identification and wavelet packet methods. Eight features are extracted, and are put into Bp neural networks system. Through this method, the fault diagnosis accuracy is improved effectively.
Keywords:computer application   information fusion   application   engine   Bp neural network   fault diagnosis
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号