首页 | 本学科首页   官方微博 | 高级检索  
     


Biochemical modeling of an autonomously oscillatory circadian clock in Euglena
Authors:K Goto  D L Laval-Martin  L N Edmunds
Abstract:Eukaryotic microorganisms, as well as higher animals and plants, display many autonomous physiological and biochemical rhythmicities having periods approximating 24 hours. In an attempt to determine the nature of the timing mechanisms that are responsible for these circadian periodicities, two primary operational assumptions were postulated. Both the perturbation of a putative element of a circadian clock within its normal oscillatory range and the direct activation as well as the inhibition of such an element should yield a phase shift of an overt rhythm generated by the underlying oscillator. Results of experiments conducted in the flagellate Euglena suggest that nicotinamide adenine dinucleotide (NAD+), the mitochondrial Ca2+-transport system, Ca2+, calmodulin, NAD+ kinase, and NADP+ phosphatase represent clock "gears" that, in ensemble, might constitute a self-sustained circadian oscillating loop in this and other organisms.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号