首页 | 本学科首页   官方微博 | 高级检索  
     

基于神经网络的农业灌溉量预测
引用本文:徐建新,李彦彬,谷红梅. 基于神经网络的农业灌溉量预测[J]. 农机化研究, 2005, 0(4): 115-117
作者姓名:徐建新  李彦彬  谷红梅
作者单位:华北水利水电学院,郑州,450008
摘    要:以农业灌溉量为研究对象,将其看作灌区有效灌溉面积、年降雨量、粮食总产量的非线性函数,并利用神经网络和灰色预测等方法对其进行预测;在此基础上,再利用神经网络的非线性特征对灌区的灌溉供水量进行预测,并且对山东聊城彭楼灌区的数据进行了验证。结果表明:相对误差较小,预测精度达到了要求。

关 键 词:农业工程  农业灌溉量  灰色预测  神经网络
文章编号:1003-188X(2005)04-0115-03
修稿时间:2005-01-10

Forecasting Agricultural Irrigation Based on Nerve Network
XU Jian-xin,LI Yan-bin,GU Hong-mei. Forecasting Agricultural Irrigation Based on Nerve Network[J]. Journal of Agricultural Mechanization Research, 2005, 0(4): 115-117
Authors:XU Jian-xin  LI Yan-bin  GU Hong-mei
Abstract:The agricultural irrigation quantity to be a research object,make it as a nonlinear function of effective irrigation area,yearly rainfall and grain output,and forecast it by using nerve network and gray forecasting; On the basis of it,nonlinear function of nerve network is used for forecasting irrigation supply in irrigation area,and examine the data of Penglou irrigation area in Liaocheng of Shandong.The result is that reative error is small,forecast precision reach the demand.
Keywords:agricultural engineering  agricultural irrigation quantity  gray forecast  nerve network  
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号