首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Poor recruitment is changing the structure and species composition of an old-growth hemlock-hardwood forest
Authors:Theodore T Salk  Lee E FrelichShinya Sugita  Randy CalcoteJames B Ferrari  Rebecca A Montgomery
Institution:a Department of Forest Resources, University of Minnesota, St. Paul, MN 55108, USA
b Department of Ecology, Evolution and Behavior, University of Minnesota, St. Paul, MN 55108, USA
c Institute of Ecology, Tallinn University, Uus-Sadama 5, 10120 Tallinn, Estonia
d Limnological Research Center, University of Minnesota, Minneapolis, MN 55455, USA
e Department of Biology, Wesleyan College, Macon, GA 31210, USA
Abstract:Anthropogenic factors such as elevated deer populations, invasive earthworms or climate change may alter old-growth forests of the Upper Midwest region of the United States. We examined demographic trends of woody species across all size classes over 35 years in a late-successional forest dominated by hemlock (Tsuga canadensis), sugar maple (Acer saccharum) and yellow birch (Betula alleghaniensis) in Michigan's Upper Peninsula using two sets of permanent plots. For the duration of the study period, species that were less-preferred white-tailed deer (Odocoileus virginianus) forage, especially sugar maple, comprised a much higher fraction of all seedlings and saplings compared to overstory trees. The density of small sugar maple declined across the study period, but no other species became more abundant, creating a more open forest understory. By the most recent census, preferred species for deer browse had been nearly eliminated from the understory, and declines in unpreferred species such as sugar maple were also apparent. We found small changes in temperature (<0.5-1 °C rise in minimum and maximum temperatures depending on season) and precipitation (±28 mm depending on season) and little evidence of invasive earthworms impacts. Our results suggest that the sustained elevated deer density is shifting the structure and composition of this old-growth forest. A demographic model showed that if current recruitment, growth and mortality rates were to continue for 500 years the forest would eventually reach a new equilibrium with virtually no hemlock or yellow birch remaining.
Keywords:White-tailed deer  Sugar maple  Yellow birch  Recruitment failure  Wilderness  Upper Michigan
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号