Evaluation of five diagnostic methods for the detection and quantification of Myxobolus cerebralis. |
| |
Authors: | Garry O Kelley Francisco J Zagmutt-Vergara Christian M Leutenegger Karin A Myklebust Mark A Adkison Terry S McDowell Gary D Marty Alex L Kahler Arla L Bush Ian A Gardner Ronald P Hedrick |
| |
Affiliation: | Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, CA 95616, USA. |
| |
Abstract: | Diagnostic methods were used to identify and quantify Myxobolus cerebralis, a myxozoan parasite of salmonid fish. In this study, 7-week-old, pathogen-free rainbow trout (Oncorhynchus mykiss) were experimentally infected with M. cerebralis and at 7 months postinfection were evaluated with 5 diagnostic assays: 1) pepsin-trypsin digest (PTD) to detect and enumerate spores found in cranial cartilage, 2) 2 different histopathology grading scales that provide a numerical score for severity of microscopic lesions in the head, 3) a conventional single-round polymerase chain reaction (PCR), 4) a nested PCR assay, and 5) a newly developed quantitative real-time TaqMan PCR. There were no significant differences (P > 0.05) among the 5 diagnostic assays in distinguishing between experimentally infected and uninfected control fish. The 2 histopathology grading scales were highly correlated (P < 0.001) for assessment of microscopic lesion severity. Quantification of parasite levels in cranial tissues using PTD and real-time TaqMan PCR was significantly correlated r = 0.540 (P < 0.001). Lastly, 104 copies of the 18S rDNA gene are present in the M. cerebralis genome, a feature that makes this gene an excellent target for PCR-based diagnostic assays. Also, 2 copies of the insulin growth factor-I gene are found in the rainbow trout genome, whose detection can serve both as an internal quality control for amplifiable DNA and as a basis to quantify pathogen genome equivalents present in quantitative PCR assays. |
| |
Keywords: | |
|
|