首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Inhibitory effect of ischemic postconditioning on autophagy induced by focal cerebral ischemia reperfusion in rats
Authors:TAO Hong-miao  SHAN Xiao-yun  LI Xu-sheng  CHEN Hao-hao  MAO Yu-fei  HE Zhong-ping
Institution:1. Jinhua Polytechnic, Jinhua 321000, China; 2. Jinhua Central Hospital, Jinhua 321000, China; 3. Jinhua Food and Drug Inspection Institute, Jinhua 321000, China
Abstract:AIM: To investigate the effect of ischemic postconditioning (IPC) on autophagy induced by focal cerebral ischemia reperfusion (I/R) in rats. METHODS: Healthy male SD rats were assigned randomly into sham-operation (sham) group, I/R group and IPC group with 10 rats in each group. The rats in sham group were only exposed the right common, internal and external carotid artery surgically. The rats in I/R group were subjected to right middle cerebral artery occlusion (MCAO) by the modified Longa suture method for 2 h followed by 24 h of reperfusion. The rats in IPC group were subjected to MCAO for 2 h followed by reperfusion of the ipsilateral common carotid artery occlusion for 10 s for 5 episodes, and then reperfusion for 24 h. Autophagy was obeserved by transmission electron microscopy (TEM). The protein levels of mammalian target of rapamycin (mTOR), p-mTOR and microtubule associated protein light chain 3 (LC3)-II in brain tissue of the rats were determined by Western blot. Pathological changes of brain tissue were observed by HE staining. RESULTS: The protein levels of mTOR and p-mTOR in IPC group were significantly higher than those in I/R group (P<0.05). The expression of LC3-II in IPC group was significantly lower than that in I/R group (P<0.01). The cerebral infarction area and brain water content in IPC group were significantly lower than those in I/R group (P<0.01). HE staining showed that neurons degeneration and necrosis in IPC group were significantly alleviated compared with I/R group. TEM observation showed that IPC revealed fewer autophagosomes, with much less severe cell damage than that in I/R group. CONCLUSION: IPC reduces brain ischemia reperfusion damage by decreasing autophagy of brain cells, which might be related to the activation of mTOR.
Keywords:Brain  Ischemic reperfusion injury  Ischemic postconditioning  Autophagy  Mammalian target of rapamycin  
点击此处可从《园艺学报》浏览原始摘要信息
点击此处可从《园艺学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号