首页 | 本学科首页   官方微博 | 高级检索  
     

毛乌素沙地4种典型植物叶片凝结水吸收能力及其水分生理响应
引用本文:李鹭辰,桂子洋,秦树高,张宇清,刘靓,杨凯捷. 毛乌素沙地4种典型植物叶片凝结水吸收能力及其水分生理响应[J]. 北京林业大学学报, 2021, 43(2): 72-80. DOI: 10.12171/j.1000-1522.20200024
作者姓名:李鹭辰  桂子洋  秦树高  张宇清  刘靓  杨凯捷
作者单位:1.北京林业大学水土保持学院,宁夏盐池毛乌素沙地生态系统国家定位观测研究站,北京 100083
基金项目:中央高校基本科研业务费专项;国家自然科学基金青年科学基金项目
摘    要:[目的]明确毛乌素沙地4种典型植物沙蓬、软毛虫实、刺藜和苦豆子的叶片凝结水吸收能力,阐明植物叶片对凝结水浸润的水分生理响应.[方法]将受试植物置于用高丰度氘水配置的人工标记凝结水环境中,进行凝结水浸润处理,通过比较处理组和对照组植物叶水、根水及根际土壤水的稳定氢同位素丰度变化,确定受试植物叶片是否具有吸水能力,示踪叶片...

关 键 词:凝结水  叶片吸水  生理响应  水分利用策略  沙生植物
收稿时间:2020-01-18

Foliar condensate absorption capacity of four typical plant species and their physiological responses to water in the Mu Us Sandy Land of northwestern China
Li Luchen,Gui Ziyang,Qin Shugao,Zhang Yuqing,Liu Liang,Yang Kaijie. Foliar condensate absorption capacity of four typical plant species and their physiological responses to water in the Mu Us Sandy Land of northwestern China[J]. Journal of Beijing Forestry University, 2021, 43(2): 72-80. DOI: 10.12171/j.1000-1522.20200024
Authors:Li Luchen  Gui Ziyang  Qin Shugao  Zhang Yuqing  Liu Liang  Yang Kaijie
Affiliation:1.School of Soil and Water Conservation, Yanchi Ecological Research Station in theMu Us Desert, Beijing Forestry University, Beijing 100083, China2.Key Laboratory of National Forestry and Grassland Administration on Soil and WaterConservation, Beijing Forestry University, Beijing 100083, China
Abstract:  Objective  In this study, we examined Agriophyllum squarrosum, Corispermum puberulum, Chenopodium aristatum, and Sophora alopecuroides in the Mu Us Desert of northwestern China to explore the ability of leaf condensate absorption and their physiological responses to water.  Method  We determined whether the condensate can be absorbed by the leaves of four plant species, and whether the absorbed water can be transported to the root and rhizosphere soil by dew covered experiments and stable isotope tracer technology to contrast the δ2H values of samples in the leaves, roots and rhizosphere soil from the treatment and control. Meanwhile, we measured leaf water potential (ΨL), leaf water content (wL), and stomatal conductance (Gs) before and after dew treatment by dew point water potential meter, electronic balance and plant porometer in order to evaluate the effects of foliar condensate absorption on the species.  Result  (1) After the deuterium labelled condensate treatment, the δ2H values in samples of leaves (20‰?100‰) in the treatment group of four plant species were significantly higher than control (?25‰? ?15‰); the δ2H values in samples of root(?45‰ ? ?30‰) and rhizosphere soil (?50‰ ? ?40‰) in the treatment group did not change significantly compared with control. (2) After the dew treatment, ΨL, wL of A. squarrosum increased by 23.81%, 2.49%, and Gs of it decreased by 57.40%, respectively; wL of C. puberulum increased by 2.45%, but the ΨL and Gs were not change significantly; ΨL of C. aristatum increased by 21.95%, but the wLand Gs were not change obviously; for S. alopecuroides, there were no significant differences in ΨL, wL and Gs.  Conclusion  We find that all of the four plant species can absorb condensate through leaves, but the water cannot be transported to the root and rhizosphere soil. Agriophyllum squarrosum, Corispermum puberulum and Chenopodium aristatum could improve their water physiological state through water absorption. It may be an important water use strategy for them to adapt to drought environment, for this helps the plants to survive. However, Sophora alopecuroides does not significantly respond to foliar condensate absorption and also could not improve its water physiological state through this process. 
Keywords:condensate  foliar water absorption  physiological response  water use strategy  desert plant
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《北京林业大学学报》浏览原始摘要信息
点击此处可从《北京林业大学学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号