首页 | 本学科首页   官方微博 | 高级检索  
     

基于空间分异的高标准农田建设空间特征判别系统设计与实现
引用本文:李少帅,郧文聚,张燕,杨剑,曹文静,李红举,陈元鹏. 基于空间分异的高标准农田建设空间特征判别系统设计与实现[J]. 农业工程学报, 2020, 36(6): 253-261
作者姓名:李少帅  郧文聚  张燕  杨剑  曹文静  李红举  陈元鹏
作者单位:中国地质大学(北京)土地科学技术学院,北京100083;自然资源部国土整治中心,北京100035;自然资源部国土整治中心,北京100035;农业农村部工程建设服务中心,北京100081;深圳市房地产和城市建设发展研究中心,深圳518040
基金项目:国家重点研发计划(NQI)项目 (2017YFF0206800);自然资源部土地整治重点实验室开放课题(2018-KF-04)
摘    要:为提升高标准农田监管效能,该文基于空间分异规律,依据相关标准和规划,构建了差别化的高标准农田建设空间特征判别指标体系,在此基础上,使用C#.NET、ArcObject技术,设计和实现了高标准农田建设空间特征判别系统。系统的实证案例表明:用于监测评价场景的黄土高原案例区符合高标准农田空间特征的田块38.33 hm^2,与验收后实际确认的高标准农田相比,总体判别精度为94.38%。2)用于设计评审场景的南方山地丘陵案例区符合高标准农田空间特征的30.07 hm^2,较批复立项的高标准农田多10.34 hm^2,造成该差异的主要因素是部分田块尚未划定为永久基本农田,如扣除永久基本农田划定因素,总体判别精度为100%。从实例结果看,使用该系统可从空间特征方面辅助判别高标准农田,分析高标准农田建设在田块平整、道路和灌排设施配套、农田防护方面的不足,为丰富高标准农田监测手段、提升管理效能提供参考。

关 键 词:土地利用  农村  空间分异  高标准农田  空间特征判别  系统设计
收稿时间:2019-04-09
修稿时间:2020-02-05

Design and implementation of spatial differentiation-based system for identifying spatial features of well-facilitated farmland construction
Li Shaoshuai,Yun Wenju,Zhang Yan,Yang Jian,Cao Wenjing,Li Hongju and Chen Yuanpeng. Design and implementation of spatial differentiation-based system for identifying spatial features of well-facilitated farmland construction[J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(6): 253-261
Authors:Li Shaoshuai  Yun Wenju  Zhang Yan  Yang Jian  Cao Wenjing  Li Hongju  Chen Yuanpeng
Affiliation:(China University of Geosciences(Beijing),School of Land Science and Technology,Beijing 100083,China;Land Consolidation and Rehabilitation Center,Ministry of Natural Resources,Beijing 100035,China;Center of Engineering and Construction Service,Ministry of Agriculture and Rural Affairs,Beijing 100081,China;Center for Assessment and Development of Real Estate,Shenzhen 518040,China)
Abstract:Rational construction of a well-facilitated farmland become necessary for food security and modern agriculture in China. In farmland construction, the automatic management of spatial data can benefit to accurately distinguish wellfacilitated farmland from the various land types. Various discriminating ways of well-facilitated farmland are adopted due to the different influence factors of agricultural productionin in different regions, where the spatial distribution and structural features of well-facilitated farmland are quite different from place to place across the country. Most of the previous studies focus mainly on policies, benefit evaluation, preliminary planning and design in the well-facilitated farmland construction.There is still lacking on the studies of the discrimination and analysis for the regional structural features of the well-facilitated farmland. In this paper, a framework of an index system was constructed to identify the spatial distribution and structural features of the well-facilitated farmland using the law of spatial differentiation together with the related national standards and strategic planning, ranging from the scale and shape of farmlands, irrigation and drainage facilities, traffic accessibility, and farmland protection ratio. The identifying system was designed on the basis of the index framework with C#. NET and Arc Object. Subsequently, the proposed system was verified for its availability by taking a case study of a LoessPlateau and a southern mountainous region. The results were as follows:(1) In the Loess Plateau area, the standard rate of the farmland scale, farmland shape, irrigation and drainage facilities, traffic accessibility was 87.01%, 83.12%, 80.52%, 90.91% and83.12%, respectively. The well-facilitated farmlandarea can be identified by the system was 38.33 hm^2 with the total discriminating precision was 94.38%. There were some farmlands that did not meet the requirements of the well-facilitated farmland, such as incomplete irrigation and drainage facilities, the irregular shapes of the fields that distributed in the branch furrow and furrow head around the farmland.(2) In the southern mountainous area, the standard rate of all spatial features was100%. The well-facilitated farmland area that identified by the system was 30.07 hm^2, which was 10.34 hm^2 higher than that of the state-approved well-facilitated farmland. The high identified areas can be because some fields that meet the requirements of well-facilitated farmland have not been classed as the permanent basic farmland in some administrative regions. When regardless of this classification, the total discrimination precision was 100%. This index system can be used in different scenarios, such as macro monitoring and evaluation, project design and inspection of the well-facilitated farmland.This system was also applied forthe Northeast Plain, North China Plain, Loess Plateau and southern mountainous regions,while the key elements of the spatial features of well-facilitated farmland construction can be detected with a reliable discriminant resolution. When combining with the remote sensing technology, the index system can help automatic management to know the real-timespatial dataof well-facilitated farmland construction. Therefore, the developed system can be successfully applied to identify the extract well-facilitated farmland in the construction area, and then to analyzethe obtained spatial datain real time, finally to implement automatic management for well-facilitated farmland construction.Furthermore, the proposed system in this paper can offer a promising reference to the current comprehensive supervision platform, and improve the management effectiveness of well-facilitated farmland construction in modern agriculture.
Keywords:land use   rural area  spatial differentiation   well-facilitated farmland   spatial features identifying   system design
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《农业工程学报》浏览原始摘要信息
点击此处可从《农业工程学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号