首页 | 本学科首页   官方微博 | 高级检索  
     


Soil organic carbon stock and fractional distribution across central-south China
Affiliation:Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River) of the Ministry of Agriculture, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
Abstract:The stock and stability of soil organic carbon (SOC) are critical to soil functions and global carbon cycle, but little quantitative information is available on the precise location and chemical components of SOC for soils across a wide range of climatic gradients. Here, a broad range of zonal soils were collected in forest land at topsoil (0–15 cm) and subsoil (15–30 cm) from temperate to tropical climatic gradient in central to south China. The stock and stability of SOC were determined in terms of aggregate and humic fractionation. SOC in bulk soils with a less significant geographic variation was comparably higher at Haplic Luvisoils in temperate regions (3637.61 g m−2) and Rhodi-Humic Ferrosols in tropical regions (3446.12 g m−2) than in the other experimental soils, but a consistent decreasing trend was observed along the soil profiles with the SOC stock was 1.11–1.97 times higher in the topsoil than in the subsoils. In addition, insoluble humin residue (HMr) as the dominant components of SOC ranged from 643.95 to 2696.90 g m−2 and decreased from temperate to tropical regions, which was consistent with the zonal variation of humic acids (HAs), but contrary to the zonal variation of fulvic acids (FAs) that fluctuated in a range of 39.67–389.55 g m−2 across the experimental sites. According to the results of partial correlation analysis, the variation of FAs stock was significantly attributed to soil pH, bulk density, iron and aluminum oxides, clay, and clay mineral content (|r|>0.61, p < 0.05), while these soil physical properties showed a contradictory effects on HAs, iron-linked humin (HMi), clay-combined humin (HMc), and HMr. Moreover, the aggregate-associated carbon stock was mainly stored in macroaggregates (36.34–76.09%) for both SOC and its chemical components, especially in topsoils, and its zonal variation was associated with that of bulk soils. In general, the redundancy analysis (RDA) revealed that mean annual precipitation (MAP) accounted for 81.8% and 13.8% of the variance in SOC chemical and physical fractionation, respectively, while the corresponding contribution of mean annual temperature (MAT) was 1.5% and 34.7%. With the increase of MAT and MAP, the chemical stability of SOC decreased in the molecular structure, and the physical protection of SOC by aggregate exhibited a unimodal trend. The obtained results would facilitate the development of regional soil carbon prediction and land management against global warming.
Keywords:Carbon stock  Humic substance  Soil aggregation
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号