首页 | 本学科首页   官方微博 | 高级检索  
     

超疏水纤维素复合气凝胶的制备及其油水分离
引用本文:尚倩倩,胡云,刘承果,杨晓慧,周永红. 超疏水纤维素复合气凝胶的制备及其油水分离[J]. 林业工程学报, 2019, 0(3): 86-92
作者姓名:尚倩倩  胡云  刘承果  杨晓慧  周永红
作者单位:中国林业科学研究院林产化学工业研究所;南京林业大学江苏省林业资源高效加工利用协同创新中心
基金项目:国家自然科学基金(31700522);江苏省自然科学基金(BK20150072);国家重点研发计划资助(2017YFE0106800);江苏省"双创计划"资助(苏人才办(2016)32号)
摘    要:纤维素气凝胶因具有强亲水性和低油水选择性,且目前纤维素气凝胶表面的疏水化处理过程较冗长,限制了其在油水分离领域的应用。为了解决上述问题,笔者以硫酸水解微晶纤维素制备得到的纳米纤维素(CNC)为原料,利用甲基三甲氧基硅烷(MTMS)在水相中对其进行硅烷化改性,通过冷冻干燥得到了硅烷化纤维素复合气凝胶。结果表明:所制备的纤维素复合气凝胶具有轻质、多孔特性,随着MTMS添加量的增加,密度逐渐升高(≤0.012 0 g/cm^3),孔隙率略有下降; MTMS的加入对纤维素复合气凝胶的微观形貌影响不大,其骨架结构以二维片层形貌为主,聚甲基硅氧烷均匀地包覆在纤维素片层表面; MTMS的加入使纤维素复合气凝胶的热稳定性明显提高,且未改变纤维素气凝胶的晶型结构,但导致其结晶度逐渐下降。纤维素复合气凝胶的表面接触角随着MTMS添加量的增加而升高,最高达到153.7°,表现出优异的超亲油/超疏水性能。作为吸油材料,超疏水纤维素复合气凝胶不仅可以吸附多种油类和有机溶剂(吸附容量达到52~121 g/g),而且表现出很好的循环使用性能。

关 键 词:纳米纤维素  聚甲基硅氧烷  气凝胶  超疏水  油水分离

Fabrication of superhydrophobic cellulose composite aerogels for oil/water separation
SHANG Qianqian,HU Yun,LIU Chengguo,YANG Xiaohui,ZHOU Yonghong. Fabrication of superhydrophobic cellulose composite aerogels for oil/water separation[J]. Journal of Forestry Engineering, 2019, 0(3): 86-92
Authors:SHANG Qianqian  HU Yun  LIU Chengguo  YANG Xiaohui  ZHOU Yonghong
Affiliation:(Institute of Chemical Industry of Forest Products,Chinese Academy of Forestry,Nanjing 210042,China;Co-Innovation Center of Efficient Processing and Utilization of Forest Resources,Nanjing Forestry University,Nanjing 210037,China)
Abstract:Due to the hydrophilicity and low oil/water absorption selectivity, the unmodified cellulose-based aerogels are limited for the oil/water separation application. Furthermore, the surface hydrophobic modification process of cellulose aerogels is time-consuming, which limits the large-scale production of aerogel-based absorption materials. In order to solve these problems, the authors fabricated superhydrophobic cellulose composite aerogels by freeze-drying the suspensions of cellulose nanocrystals (CNC), a natural nanomaterial isolated by sulfuric acid hydrolysis of microcrystalline cellulose, in the presence of methyltrimethoxysilane (MTMS) with various concentrations. The modified cellulose composite aerogels displayed ultralight property and porous structure with the density ranging from 0.0052g/cm^3 to 0.0120g/cm^3 and the porosity ranging from 99.66% to 99.30%. The SEM images showed that the addition of MTMS had little effect on the morphology of the cellulose composite aerogels with 2D-sheet-like skeleton structure. The polymethylsiloxane formed a thin layer on the cellulosic substrate and did not change the porous structure of the cellulose aerogel. Compared with the unmodified cellulose aerogel, the modified cellulose composite aerogels remained the cellulose Ⅰ structure, while the crystallinity of the composite aerogel decreased with the increase of MTMS usage. Meanwhile, the thermal stability of the cellulose composite aerogel was enhanced with the increase of MTMS usage. The surface contact angle of the modified cellulose composite aerogels increased with the increase of MTMS usage. The highest surface contact angle was up to 153.7°. The modified cellulose composite aerogel could float on the water surface and displayed good oil/water absorption selectivity because of its excellent superhydrophobic/superoleophilic properties. As the oil absorption material, the superhydrophobic cellulose composite aerogel not only efficiently absorbed a wide range of oils and organic solvents with absorption capacities in the range of 52-121 g/g, but also exhibited remarkable recyclability.
Keywords:cellulose nanocrystals  polymethylsiloxane  aerogel  superhydrophobicity  oil/water separation
本文献已被 CNKI 维普 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号