首页 | 本学科首页   官方微博 | 高级检索  
     


Siltation and radiocesium pollution of small lakes in different catchment types far from the Fukushima Daiichi nuclear power plant accident site
Affiliation:1. Ufa Institute of Biology, Russian Academy of Sciences, Pr. Oktyabrya 69, Ufa, 450054, Russia;2. Graduate School of Agricultural Science, Tohoku University, 232-3 Yomogita, Naruko-onsen, Osaki, 989-6711, Japan
Abstract:The Fukushima Daiichi nuclear power plant accident caused radioactive pollution in northeastern Honshu Island, Japan. This study examined the influence of snowmelt and rainfall on soil erosion processes and siltation of small lakes in Miyagi Prefecture (150 km northwest of the power plant). Two sets of slopes and lakes, respectively in pasture and forest catchments, were examined. Snowpack thickness, soil infiltration, surface runoff volume, soil and sediment physicochemical properties, Cs concentration of precipitation, meltwater, and rainwater, and lake siltation rates were determined. The total radioactive Cs content in precipitation was 0.7–7.4 BqˑL−1 and was below the Japanese standard (10 BqˑL−1). Total radioactive Cs was at the allowable level in water flowing down the pasture catchment slope (0.1–9.2 BqˑL−1) during snowmelt and rainfall, as well as in pasture (0.9–8.8 BqˑL−1) and forest (0.7–5.2 BqˑL−1) catchment lake water. There was no soil erosion (surface runoff) in the forest catchment. Soil losses in the pasture catchment were 23 due to rainfall and 9 kg ha−1 yr−1 following spring snowmelt. After snowmelt, a 0.5 and 0.2 mm thick layer of silt was deposited in pasture and forest catchment lakes, respectively, and 1.4 and 0.6 mm were deposited during the rainfall period. Average siltation rates were 1.9 and 0.8 mmˑyr−1 for pasture and forest catchment lakes, respectively. The upper layer of lake bottom sediments is represented mainly by silt fractions (2–50 μm), with high organic matter (4.0–5.7%) and radiocesium (1100–1600 kgˑha−1) contents.
Keywords:Fukushima Daiichi  Radiocesium  Siltation  Suspended sediment  Waterbodies  Water turbidity
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号