首页 | 本学科首页   官方微博 | 高级检索  
     


Regional scale analysis of denitrification in north temperate forest soils
Authors:Peter M. Groffman  James M. Tiedje  Delbert L. Mokma  Stephen Simkins
Affiliation:(1) Department of Crop and Soil Sciences, Michigan State University, 48824 East Lansing, MI;(2) Present address: Department of Natural Resources Science, University of Rhode Island, 02881 Kingston, RI, USA;(3) Present address: Department of Plant and Soil Sciences, University of Massachusetts, 01003 Amherst, MA, USA
Abstract:Large scale analyses of biogeochemical processes are necessary for understanding anthropogenic effects on global climate and environmental quality. Regional scale estimates of denitrification from forest soils in southern lower Michigan USA were produced by stratifying the region into landscape experimental units using soil texture and natural drainage classes, and extrapolating data to larger areas using a geographic information system (GIS). Previous landscape-scale research established relationships between soil texture and drainage and denitrification and quantified annual denitrification N loss in nine soil texture/drainage groups. All forest soils within the region (64 series) were assigned to one of these nine groups based on their texture and drainage characteristics and were assigned an annual denitrification N loss value. A regional estimate of denitrification was produced by multiplying the areal extent of each of the nine soil groups by their annual denitrification N loss value. Loam-textured soils underlie 47% of the regional forest and accounted for 73% of the forest denitrification. Sandy soils were found under 44% of the regional forest but produced only 5% of the regional denitrification. Clay loam soils underlie 9% of the regional forest and produced 22% of the denitrification. Annual denitrification N loss for the region was estimated as 1.4×107 kg N/yr. We used denitrification enzyme activity (DEA) as a proxy for annual denitrification N loss to determine if the relationship between denitrification and soil texture and natural drainage that we observed at the landscape scale held up at the regional scale. DEA was measured in 22 soils across the region and was strongly related to soil texture and natural drainage (r2=0.61), suggesting that extrapolation of data from the landscape to the regional scale was justified.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号