首页 | 本学科首页   官方微博 | 高级检索  
     

茶叶咖啡碱近红外光谱模型简化方法
引用本文:耿 响,陈 斌,叶 静,颜 辉,胡永光. 茶叶咖啡碱近红外光谱模型简化方法[J]. 农业工程学报, 2009, 25(10): 345-349. DOI: 10.3969/j.issn.1002-6819.2009.10.062
作者姓名:耿 响  陈 斌  叶 静  颜 辉  胡永光
作者单位:1. 江苏大学食品与生物工程学院,镇江,212013
2. 江苏大学现代农业装备与技术教育部重点实验室,江苏省现代农业装备与技术重点实验室,镇江,212013
基金项目:“十一五”国家科技支撑计划(2006BAD11A13);镇江市2007年农业科技项目(NY2007038)
摘    要:该文以茶叶为研究对象,以近红外光谱分析技术快速检测茶叶中的咖啡碱含量为目的,采用一种小波包分析-移动窗口偏最小二乘法(WPA-MWPLS)的处理光谱数据方法,即利用小波包精细的多层分解功能扣除背景、降低噪声的影响,利用移动窗口偏最小二乘法(MWPLS)挑选与茶叶中咖啡碱相关性较大的波数区间使用偏最小二乘法建立校正模型。与只经过Savitzky–Golay预处理后直接利用PLS所建模型相比,采用小波包分析-移动窗口偏最小二乘法使得预测相关系数R由0.9170提高到了0.9625;预测均方差RESEP由0.3071下降为0.2463。该结果表明:该方法具有预处理简单、优选参数和建模变量少等特点,能在很大程度上简化建模过程、提高建模和分析速度。

关 键 词:近红外光谱,小波分析,模型,移动窗口偏最小二乘法,咖啡碱
收稿时间:2009-02-12
修稿时间:2009-10-17

Simplification of model for tea caffeine detection by near infrared spectroscopy
Geng Xiang,Chen Bin,Ye Jing,Yan Hui and Hu Yongguang. Simplification of model for tea caffeine detection by near infrared spectroscopy[J]. Transactions of the Chinese Society of Agricultural Engineering, 2009, 25(10): 345-349. DOI: 10.3969/j.issn.1002-6819.2009.10.062
Authors:Geng Xiang  Chen Bin  Ye Jing  Yan Hui  Hu Yongguang
Affiliation:1. School of Food and Biological Engineering, Zhenjiang 212013, China,1. School of Food and Biological Engineering, Zhenjiang 212013, China,1. School of Food and Biological Engineering, Zhenjiang 212013, China,1. School of Food and Biological Engineering, Zhenjiang 212013, China and 2. Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education , Jiangsu Provincial Key Laboratory of Modern Agricultural Equipment and Technology, Jiangsu University, Zhenjiang 212013, China
Abstract:Wavelet packet analysis-moving window partial least square(WPA-MWPLS) data processing method was utilized to rapidly detect the caffeine content in tea by near-infrared spectroscopy. Fine multi-level decomposition function of wavelet packet was used to subtract background and noise. At the same time, MWPLS was used to select wavelength ranges that had good relevance with caffeine content in the tea. And then, an adjusted model was established with partial least square. Compared with the model built with the pretreatment of Savitzky-Golay smooth, the prediction correlation coefficient of the model with WPA-MWPLS increased from 0.9170 to 0.9625 and the root mean squared error was reduced from 0.3071 to 0.2463. This method has such advantages as simple pretreatment, few parameters to optimize, and a small number of variables, thus it greatly simplifies the modeling process and enhances the efficiency in building and analyzing the models.
Keywords:near infrared spectroscopy (NIR)   models   wavelet analysis   moving window partial least square   caffeine
本文献已被 万方数据 等数据库收录!
点击此处可从《农业工程学报》浏览原始摘要信息
点击此处可从《农业工程学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号