首页 | 本学科首页   官方微博 | 高级检索  
     


Extended exposure to trichostatin A after activation alters the expression of genes important for early development in nuclear transfer murine embryos
Authors:Kang Hoin  Roh Sangho
Affiliation:Cellular Reprogramming and Embryo Biotechnology Laboratory, Dental Research Institute and CLS 21, Seoul National University School of Dentistry, Seoul 110–749, Korea.
Abstract:The low viability of embryos reconstructed by somatic cell nuclear transfer (SCNT) is believed to be associated with epigenetic modification errors, and reduction of those errors may improve the viability of SCNT embryos. The present study shows the effect of trichostatin A (TSA), a strong inhibitor of histone deacetylase, on the development of murine SCNT embryos. After enucleation and nuclear injection, reconstructed murine oocytes were activated with or without TSA for 6 hr (TSA-6 hr). After activation, TSA treatment was extended to 3 hr (TSA-9 hr), 5 hr (TSA-11 hr) and 18 hr (TSA-24 hr) during culture. As a result, the SCNT embryos in the TSA-11 hr group showed a remarkably higher blastocyst rate (21.1%) when compared with the nontreated embryos (3.4%), while the concentration of TSA did not significantly affect embryonic development. The expressions of histone deacetylase (HDAC1 and HDAC2) and DNA methylation (DNMT3a and DNMT3b) genes decreased in the TSA-11 hr and TSA-24 hr groups, while there was an increase in the expression of histone acetyltransferase (P300 and CBP), pluripotency (OCT4 and NANOG) and embryonic growth/trophectoderm formation (FGF4)-related genes in the same groups. The expression of CDX2, a critical gene for trophectoderm formation was upregulated only in the TSA-24 hr group. Our results show that TSA treatment during the peri- and postactivation period improves the development of reconstructed murine embryos, and this observation may be explained by enhanced epigenetic modification of somatic cells caused by TSA-induced hyperacetylation, demethylation and upregulation of pluripotency and embryonic growth after SCNT.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号