Structure of a new echinocystic acid bisdesmoside isolated from Codonopsis lanceolata roots and the cytotoxic activity of prosapogenins |
| |
Authors: | Lee Kyung-Tae Choi Jongwon Jung Won-Tae Nam Jung-Hwan Jung Hyun-Ju Park Hee-Juhn |
| |
Affiliation: | College of Pharmacy, Kyung-Hee University, Seoul, Korea. |
| |
Abstract: | We isolated a new saponin named codonoposide (1) from the roots of Codonopsis lanceolata (Campanulaceae) and characterized it as 3-O-[beta-D-xylopyranosyl(1-3)-beta-D-glucuronopyranosyl]-3beta,16alpha-dihydroxyolean-28-oic acid 28-O-[beta-D-xylopyranosyl (1-3)-alpha-L-rhamnopyranosyl (1-2)-alpha-L-arabinopyranosyl] ester by chemical, physicochemical, and 2DNMR techniques. Complete hydrolysis of 1 produced a sapogenin (1a), and the partial hydrolysis and further isolation afforded two prosapogenins (1b, 1c). The structures of 1a, 1b, and 1c were found to be 3beta,16alpha-dihydroxyolean-28-oic acid (echinocystic acid, 1a), 3-O-beta-D-glucuronopyranoside of 1a, and 3-O-beta-D-xylopyranosyl (1-3)-beta-D-glucuronopyranoside of 1a, respectively, on the basis of spectroscopic data. On MTT assay, 1a showed marginal cytotoxic activity whereas 1b exhibited more cytotoxicity than 1a. However, the bisdesmosylsaponin 1 exhibited no cytotoxicity (IC(50)>0.3 mM against tested cell lines). This result indicated that glycoside linkage of glucuronic acid at C-3 enhances the cytotoxicity of sapogenin (1a), and additive glycosylation of xylose to 1b strongly enhances the cytotoxicity of 3-O-monosaccharides (1b). Therefore, true forms of codonoposide for the cytotoxicity must be sapogenins or prosapogenins. |
| |
Keywords: | |
本文献已被 PubMed 等数据库收录! |
|