首页 | 本学科首页   官方微博 | 高级检索  
     

基于支持向量机的葡萄病害图像识别方法
引用本文:田有文,李天来,李成华,朴在林,孙国凯,王滨. 基于支持向量机的葡萄病害图像识别方法[J]. 农业工程学报, 2007, 23(6): 175-180
作者姓名:田有文  李天来  李成华  朴在林  孙国凯  王滨
作者单位:沈阳农业大学信息与电气工程学院,沈阳,110161;沈阳农业大学园艺学院,沈阳,110161;沈阳理工大学机械工程学院,沈阳,110168
摘    要:应用计算机图像处理技术和支持向量机识别方法研究了葡萄叶部病害的识别,以提高识别的准确性和效率。首先对采集到的葡萄病害彩色图像采用矢量中值滤波法去除噪声,然后采用统计模式识别方法和数学形态学对病叶图像进行了分割。最后提取了葡萄病叶彩色图像的纹理特征、病斑的形状特征和颜色特征,并用支持向量机的模式识别方法来识别葡萄病害。试验结果表明:支持向量机识别方法能获得比神经网络方法更好的识别性能;综合形状特征和纹理特征的支持向量机识别方法对葡萄病害的正确识别率优于只用形状特征或纹理特征的病种识别,综合颜色特征和纹理特征

关 键 词:支持向量机  图像处理  葡萄病害  矢量中值滤波  图像分割  特征向量
文章编号:1002-6819(2007)6-0175-06
收稿时间:2006-08-10
修稿时间:2007-01-06

Method for recognition of grape disease based on support vector machine
Tian Youwen,Li Tianlai,Li Chenghu,Piao Zailin,Sun Guokai and Wang Bin. Method for recognition of grape disease based on support vector machine[J]. Transactions of the Chinese Society of Agricultural Engineering, 2007, 23(6): 175-180
Authors:Tian Youwen  Li Tianlai  Li Chenghu  Piao Zailin  Sun Guokai  Wang Bin
Affiliation:College of Information and Electric Engineering, Shenyang Agricultural University, Shenyang 110161, China;College of Horticulture, Shenyang Agricultural University, Shenyang 110161, China;School of Mechanical Engineering, Shenyang University of Technology, Shenyang 110168, China;College of Information and Electric Engineering, Shenyang Agricultural University, Shenyang 110161, China;College of Information and Electric Engineering, Shenyang Agricultural University, Shenyang 110161, China;College of Information and Electric Engineering, Shenyang Agricultural University, Shenyang 110161, China
Abstract:A new method for recognizing grape leaf disease by using computer image processing and Support Vector Machine(SVM) was studied to improve recognition accuracy and efficiency. At first, vector median filter was applied to remove noise of the acquired color images of grape leaf with disease. Then a method of statistic pattern recognition and mathematics morphology was introduced to segment images of grape leaf with disease. At last texture features, shape features and color features of color image of grape leaf with disease were extracted, and classification method of SVM for recognition of grape disease was used. Experimental results indicate that the classification performance of Support Vector Machine is better than that of neural networks. Recognition rate of grape disease based on SVM of shape and texture feature is better than that of only using the shape or texture feature, recognition rate of grape disease based on SVM of color and texture feature is higher than that of only using the color or texture feature.
Keywords:Support Vector Machine   image processing   grape disease   vector median filter   image segmentation   eigenvector
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《农业工程学报》浏览原始摘要信息
点击此处可从《农业工程学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号