首页 | 本学科首页   官方微博 | 高级检索  
     

思茅松树高曲线方程中的异方差研究
引用本文:吴明山,胥辉. 思茅松树高曲线方程中的异方差研究[J]. 林业调查规划, 2007, 32(2): 1-3,6
作者姓名:吴明山  胥辉
作者单位:西南林学院,云南,昆明,650224;西南林学院,云南,昆明,650224
基金项目:云南省中青年学术与技术带头人培养基金,云南省中青年学术技术带头人后备人才培养计划
摘    要:运用残差图法和戈德菲尔特-夸检验方法检验出思茅松树高曲线方程中存在异方差现象.应用树高曲线方程本身为权函数对曲线方程进行加权,结果表明加权估计能够很好地消除思茅松树高曲线方程中的异方差问题,使曲线方程中的参数更加稳定,预估精度提高,应用性增强.

关 键 词:思茅松  树高曲线方程  异方差  加权估计
文章编号:1671-3168(2007)02-0001-03
修稿时间:2006-12-29

Study on Different Variance in Curve Equation of Tree Height of Pinus kesiya var. Langbianensis
WU Ming-shan,XU Hui. Study on Different Variance in Curve Equation of Tree Height of Pinus kesiya var. Langbianensis[J]. Forest Inventory and Planning, 2007, 32(2): 1-3,6
Authors:WU Ming-shan  XU Hui
Abstract:There exists a phenomenon of different variance in curve equation of tree height of Pinus kesiya var.Langbianensis examined by method of weighted residual.The curve equation of tree height itself as weighted function weights the equation.As a result,it shows that weighting estimate can be better enough to eliminate the different variance problem in the equation to stabilize the parameter further,to improve the pre-estimate precision and to enhance the possibility of application in the curve equation.
Keywords:Pinus kesiya var.Langbianensis  curve equation of height  different variance  weighting estimate
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号