首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Effect of Low Soil Temperature on Weight Increase, Gas Exchange and Distribution of 14C-Assimilates in Seedlings of a Maize Hybrid
Authors:J Ko&#;cielniak    F Janowiak  J Biesaga-Ko&#;cielniak
Institution:Chair of Plant Physiology, Faculty of Agriculture, University of Agriculture of Kraków, Poland;Department of Plant Physiology, Polish Academy of Sciences, Kraków, Poland
Abstract:Seedlings of a maize hybrid sensitive to chilling initially grew in the growth chamber of the phytotron at 20/ 17°C (day/night) and after the formation of the fourth leaf, the soil temperature was lowered to 5°C. Under such growth conditions the dynamics of dry weight change, gas exchange and the distribution of 14C-assimilates in seedlings were examined. The low soil temperature inhibited daily growth of dry weight of whole seedlings more than their photosynthesis. Simultaneously, it was also responsible for a greater increase in dissimilative losses.
During 37 hours (day-night-day), following exposure to 14CO2, dissimilation in seedlings in cool soil (5°C) and in non-chilling conditions amounted to 35.1 % and 23.4 % of assimilated 14C (AC), respectively. At lower soil temperature relatively high dissimilative losses were observed on the first day after exposure (23.5 %), lower at night (9.9 %) and the lowest on the following day - merely 1.7 % AC. Higher losses of 14C under chilling conditions occurring on the first day were a result of limited photosynthetic refixation of 14CO2 At night, however, they were associated with a prolonged period of intensive translocation of assimilates to the stem. It was assumed that an excessive accumulation of assimilates in leaf blades might be an additional factor responsible for increased dissimilative losses at low temperature during the first twenty-four hours. In the third period of measurements, as a result of a limited transport of 14C, dissimilative losses were lower than in previous ones and were not dependent upon soil temperature.
Keywords:14C-assimilates  chilling  photosynthesis  respiration              Zea mays L
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号