首页 | 本学科首页   官方微博 | 高级检索  
     检索      

沟头高度和土壤质地对细沟溯源侵蚀特征和形态发育的影响
引用本文:王睿,李鹏,韩建纯,朱玉斌,苏远逸.沟头高度和土壤质地对细沟溯源侵蚀特征和形态发育的影响[J].农业工程学报,2021,37(10):91-99.
作者姓名:王睿  李鹏  韩建纯  朱玉斌  苏远逸
作者单位:1.西安理工大学省部共建西北旱区生态水利国家重点实验室 西安 710048;2.旱区生态水文与灾害防治国家林业和草原局重点实验室 西安 710048
摘    要:沟头溯源侵蚀是黄土高原主要的侵蚀方式之一。为研究细沟沟头高度和土壤质地对侵蚀产沙、沟头溯源侵蚀过程及沟道形态发育的影响,该研究采用不同沟头高度的沟头,在室内进行了一系列冲刷试验(流量为2、4和6 L/min)。结果表明:1)随着沟头高度的增加,产沙率增加,土壤流失过程的波动程度也增加,且越易被侵蚀;2)对比不同土壤质地,总体上,壤质砂土的产沙率和溯源侵蚀速率大于粉砂质壤土。当沟头高度为15 cm、流量为6 L/min时,壤质砂土的沟头溯源侵蚀速率最大,为19.45 cm/min;3)粉砂质壤土土壤下切深度较深,更易发生下切侵蚀,壤质砂土土壤沟道横截面宽深比最大值是粉砂质壤土土壤的3倍多,且沟头溯源侵蚀累积距离为75cm时沟道横截面宽深比值较小,更易发生侧向侵蚀;4)4个细沟形态地形子参数(起伏度、粗糙度、切割深度和坡度)与产沙量有较好的线性线相关关系(R2≥0.48),沟头侵蚀下的微地形可以在一定程度上反映产沙量的大小,进而估算产沙量。研究结果可为黄土高原细沟侵蚀下的水土保持措施提供参考依据。

关 键 词:土壤  侵蚀  产沙  沟头  溯源侵蚀  地形参数
收稿时间:2021/4/15 0:00:00
修稿时间:2021/4/15 0:00:00

Effects of gully head height and soil texture on headward erosion characteristics and topography evolution
Wang Rui,Li Peng,Han Jianchun,Zhu Yubin,Su Yuanyi.Effects of gully head height and soil texture on headward erosion characteristics and topography evolution[J].Transactions of the Chinese Society of Agricultural Engineering,2021,37(10):91-99.
Authors:Wang Rui  Li Peng  Han Jianchun  Zhu Yubin  Su Yuanyi
Abstract:Abstract: Gully head erosion has become one of the most serious types of land degradation in the Loess Plateau region of China. Soil erosion from head-cutting has posed severe damage to the natural environment, while soil degradation is ever deteriorating in recent years. This study aims to investigate the effects of gully head height and soil texture on the erosion process and the microgeomorphology during spatial evolution of channel morphology. A three-dimensional laser scanning was used to capture high-precision micro-geomorphology, thereby representing the morphological changes and development process of erosion gullies. A response relationship was established between the sand yield and topographic factors under the headward erosion of the gully head. An indoor test was carried out to explore the effects of different gully head heights (5, 10, and 15 cm) on the erosion sand yield, gully retreat distance, and gully morphological development under silty loam and loamy sand textures using three flow rates (2, 4, and 6 L/min) for water release scour. The results showed that: 1) There was more fluctuation of soil loss in the study areas, while less resistance to the erosion, as the head height increased. The erosion rate of loamy sand was higher than that of silty loam in the various soil textures. Furthermore, the loamy sand loss fluctuated more than the silty loam, while the erosion rate of loamy sand was also significantly larger than that of silty loam. When the height of gully head is 15 cm and the flow rate is 6 L/min, the headward erosion rate of loamy sand is the highest, which is 19.45 cm / min. 2) There was a sharp increase in the rate of gully head headward erosion, where the scouring water accelerated the denudation of surface erosion, particularly when the gully retreat distance reached the location where the surface erosion occurred on the upstream slope of the gully head. 3) The width-to-depth ratio of the channel increased gradually in the cross section under the same gully height, with the increase of water flow. The depth of headcut erosion was great at the head of the gully under silty loam. The maximum width-to-depth ratio of the cross-sectional channel in the loamy sand was more than three times that of silty loam. It indicated that the silty loam was more prone to undercutting erosion, whereas, the loamy sand was more prone to lateral erosion. Meanwhile, the width-to-depth ratio of the cross-sectional channel was the smallest, when the gully retreat distance of the gully head was 75 cm. 4) In addition, there was also a better linear correlation of four microtopographic or topographic factors with the sediment yield, including the fluctuation, roughness, cutting depth, and slope. Consequently, the microtopography under the gully erosion can be expected to represent the size of sand production, further to estimate the quantity of sand yield. The finding can provide a potential promising reference for the soil and water conservation under the erosive action of flushes and gullies on the Loess Plateau of China.
Keywords:soils  erosion  sediments  gully head  headward erosion  topographic parameters
本文献已被 CNKI 等数据库收录!
点击此处可从《农业工程学报》浏览原始摘要信息
点击此处可从《农业工程学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号