首页 | 本学科首页   官方微博 | 高级检索  
     

基于概率神经网络的遥感图像分类MATLAB实现
引用本文:李海洋,范文义. 基于概率神经网络的遥感图像分类MATLAB实现[J]. 东北林业大学学报, 2008, 36(6): 55-57
作者姓名:李海洋  范文义
作者单位:东北林业大学,哈尔滨,150040
基金项目:国家高技术研究发展计划(863计划) , 黑龙江省科技攻关项目
摘    要:在遥感图像分类研究方面人工神经网络是一种有效途径,与传统的分类方法相比概率神经网络具有许多优良的性能,因此利用神经网络工具箱构建了概率神经网络,经对比分类精度选取最优SPREAD=0.009,并对一幅TM假彩色遥感图像通过训练后,仿真输出能真实地反映原始图像的特征,其分类总精度为82.62%,Kap-pa系数为0.7821,结果表明:分类精度能够满足遥感图像分类的需要。

关 键 词:Matlab  概率神经网络  分类  精度  Kappa系数
修稿时间:2008-03-17

Matlab Realization of Sensing Image Classification Based on Probabilistic Neural Network
Li Haiyang,Fan Wenyi. Matlab Realization of Sensing Image Classification Based on Probabilistic Neural Network[J]. Journal of Northeast Forestry University, 2008, 36(6): 55-57
Authors:Li Haiyang  Fan Wenyi
Abstract:The artificial neural network is a kind of effective way in remote sensing image classification.Compared with traditional classification methods,probabilistic neural network has many superior performances.Therefore,the probabilistic neural network was constructed by utilizing the neural network toolbox and choosing the optimal SPREAD(0.009)compared with the classified precision.A TM false color composition image was trained and a satisfactory simulation result was got by applying the probabilistic neural network.The total classification precision is 82.62%,and Kappa coefficient is 0.7821.The result shows that the classification precision can meet the demand of remote sensing image classification.
Keywords:Matlab  Probabilistic neural network  Classification  Precision  Kappa coefficient
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号