Validation of nonnested and real-time PCR for diagnosis of sheep-associated malignant catarrhal fever in clinical samples. |
| |
Authors: | Donald L Traul Naomi S Taus J Lindsay Oaks Donal O'Toole Fred R Rurangirwa Timothy V Baszler Hong Li |
| |
Affiliation: | Animal Disease Research Unit, USDA-Agricultural Research Service, 3003 ADBF, Washington State University, Pullman, WA 99164, USA. |
| |
Abstract: | Sheep-associated malignant catarrhal fever (SA-MCF), a frequently fatal disease primarily of certain ruminants, is caused by ovine herpesvirus 2 (OvHV-2). Molecular diagnosis of SA-MCF in affected animals has relied on detection of OvHV-2 DNA using a nested PCR, which has significant potential for amplicon contamination as a routine method in diagnostic laboratories. In this report, a nonnested and a previously developed real-time PCR were validated for detection of OvHV-2 DNA in samples from clinically affected animals. Three sets of blood or tissue samples were collected: 1) 97 samples from 97 naturally affected animals with evidence of clinical SA-MCF; 2) 200 samples from 8 animals with experimentally induced SA-MCF; and 3) 100 samples from 100 animals without any evidence of clinical SA-MCF. Among 97 positive samples defined by nested PCR from clinically affected animals, 95 (98%) were positive by nonnested PCR and 93 (96%) were positive by real-time PCR, respectively. One hundred percent of the samples from the animals with experimentally induced MCF were positive by real-time PCR, while 99% were positive by nonnested PCR. Neither nonnested PCR nor real-time PCR yielded a positive result on any of the 100 nested PCR-negative samples from animals without evidence of clinical MCF. The data confirmed that both nonnested and real-time PCR maintained high specificity and sensitivity for the detection of OvHV-2 DNA in clinical samples. |
| |
Keywords: | |
|
|