首页 | 本学科首页   官方微博 | 高级检索  
     检索      


In vitro and in vivo pharmacodynamic properties of the fluoroquinolone ibafloxacin
Authors:Coulet M  Van Borssum Waalkes M  Cox P  Lohuis J
Institution:Intervet Pharma R&D S A, Angers Technopole, Rue Olivier de Serres, Beaucouzé Cedex, France.myriam.coulet@intervet.com
Abstract:The pharmacodynamic properties of a new veterinary fluoroquinolone antimicrobial agent, ibafloxacin, were evaluated. Minimal inhibitory concentrations (MIC), time-kill kinetics, postantibiotic effect (PAE) and postantibiotic subminimal inhibitory concentration effects (PA-SME) were determined against pathogenic canine Gram-negative and Gram-positive bacterial isolates from dermal, respiratory and urinary tract infections. The synergistic interactions between ibafloxacin and its main metabolite, 8-hydroxy-ibafloxacin were investigated. Finally, the efficacy of ibafloxacin was tested in in vivo canine infection models. Ibafloxacin had good activity against Pasteurella spp., Escherichia coli, Klebsiella spp., Proteus spp. and Staphylococcus spp. (MIC90=0.5 microg/mL), moderate activity against Bordetella bronchiseptica, Enterobacter spp. and Enterococcus spp. (MIC50=4 microg/mL) and low activity against Pseudomonas spp. and Streptococcus spp. The time-killing analysis confirmed that ibafloxacin was bactericidal with a broad spectrum of activity. The PAE and PA-SME were between 0.7-2.13 and 1-11.5 h, respectively. Finally, studies in dog models of wound infection and cystitis confirmed the efficacy of once daily oral ibafloxacin at a dosage of 15 mg/kg. Additional studies are needed to better define the importance of AUC/MIC (AUIC) and Cmax/MIC ratios on the outcome of fluoroquinolone therapy in dogs.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号