首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Beziehungen zwischen Klimafaktoren und C-, N-Pools in Partikelgrößen-Fraktionen zonaler Steppenböden Rußlands
Authors:Andrej Rodionov  Wulf Amelung  Inga Urusevskaja  Wolfgang Zech
Abstract:Relationships between climatic factors and C, N pools in particle-size fractions of steppe soils, Russia Many soils of the Russian steppe are characterized by high soil organic matter contents and similar parent material. Thus, they are suitable for investigations of a climatic impact on C and N pools. We sampled 10 topsoils of the zonal Russian steppe at 0–10 and about 50–60 cm depth intervals. After particle-size fractionation into clay (<2 μm), silt (2–20 μm), fine sand (20–250 μm) organic C and N concentrations were determined in bulk soils and fractions. The results suggest that especially the older organic matter of the subsoil (in the silt fraction) is correlated with climatic factors. Topsoils show less evidence for climatic influences on C and N pools. As the ratio of mean annual precipitation to potential evaporation (=N/V) increases, C/N ratios decrease in all fractions and, thus, in the bulk subsoil. Obviously the degree of soil organic matter alteration was more pronounced in the order Greyzem (N/V = 1.0) > Chernozem, Phaeozem (N/V = 0.89) > Haplic Kastanozem (N/V = 0.6) > Calcic (N/V = 0.34), and Gypsic Kastanozem (N/V = 0.32). The organic carbon contents of the bulk subsoil are highest in the subsoil of the Chernozem and Phaeozem, and decrease with increasing N/V ratio (i.e., increasing heat input and dryness) to the Calcic Kastanozem. This is accompanied by an increasing enrichment of organic carbon in the silt fractions (r = ?0.99 for the correlation of the C enrichment in silt with N/V).
Keywords:soil organic matter  climate  land use  particle-size fractions
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号