首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Effects of soil pH and salt on N2O production in adjacent forest and grassland soils in central Alberta, Canada
Authors:Yi Cheng  Zucong Cai  Scott X Chang  Jing Wang  Jinbo Zhang
Institution:1. State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
2. Department of Renewable Resources, University of Alberta, 442 Earth Sciences Building, Edmonton, T6G 2E3, Canada
3. School of Geography Science, Nanjing Normal University, Nanjing, 210046, China
Abstract:

Purpose

The effects of soil pH manipulation and KCl addition on N2O production in adjacent forest and grassland soils in central Alberta were studied in a 16-day laboratory incubation experiment.

Materials and methods

The soils were subjected to four pH and two salt treatments: CK (control)—no addition of acid or alkali solution (pH 4.50 and 4.48 for the forest and grassland soils, respectively; same below); HCl—addition of HCl solution to lower soil pH (3.95 and 3.75); L-KOH and H-KOH—addition of 6 mL of 0.2 (5.36 and 5.57) and 0.4 (6.41 and 6.72)?mol?L?1 KOH solution, respectively, to increase soil pH to two different levels. In order to differentiate between the effect of a change in pH and of changed salt concentrations on N2O production, 6 mL of 0.2 (L-KCl) (4.56 and 4.41) or 0.4 mol?L?1 (H-KCl) (4.59 and 4.42) KCl solutions were also applied as treatments to create two levels of salt application rates.

Results and discussion

Increasing pH promoted gross nitrification and cumulative N2O production in both soils, particularly in the forest soil. However, cumulative N2O production decreased in the forest soil but increased in the grassland soil when pH decreased. Cumulative N2O production in the grassland soil was 36 times higher in the L-KCl treatment (1,442 μg?N?kg?1) than in the CK (40 μg?N?kg?1), whereas the H-KCl treatment reduced cumulative N2O production. In contrast, in the forest soil, both KCl treatments reduced cumulative N2O production.

Conclusions

(1) The most important factor to increase N2O production in this study was increasing soil pH, suggesting that careful soil pH management could be used as a tool to control soil N2O production; (2) salt effect was also involved in affecting N2O production.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号