首页 | 本学科首页   官方微博 | 高级检索  
     


Highly efficient preparation of lipophilic hydroxycinnamates by solvent-free lipase-catalyzed transesterification
Authors:Weitkamp Petra  Vosmann Klaus  Weber Nikolaus
Affiliation:Institut für Lipidforschung, Bundesforschungsanstalt für Ern?hrung und Lebensmittel, Münster, Germany.
Abstract:Various medium- or long-chain alkyl cinnamates and hydroxycinnamates, including oleyl p-coumarate as well as palmityl and oleyl ferulates, were prepared in high yield by lipase-catalyzed transesterification of an equimolar mixture of a short-chain alkyl cinnamate and a fatty alcohol such as lauryl, palmityl, and oleyl alcohol under partial vacuum at moderate temperature in the absence of solvents and drying agents in direct contact with the reaction mixture. Immobilized lipase B from Candida antarctica was the most effective biocatalyst for the various transesterification reactions. Transesterification activity of this enzyme was up to 56-fold higher than esterification activity for the preparation of medium- and long-chain alkyl ferulates. The relative transesterification activities found for C. antarctica lipase were of the following order: hydrocinnamate > cinnamate > 4-hydroxyhydrocinnamate > 3-methoxycinnamate > 2-methoxycinnamate approximately 4-methoxycinnamate approximately 3-hydroxycinnamate > hydrocaffeate approximately 4-hydroxycinnamate > ferulate > 2-hydroxycinnamate > caffeate approximately sinapate. With respect to the position of the hydroxy substituents at the phenyl moiety, the transesterification activity of C. antarctica lipase B increased in the order meta > para > ortho. The immobilized lipases from Rhizomucor miehei and Thermomyces lanuginosus demonstrated moderate and low transesterification activity, respectively. Compounds with inverse chemical structure, that is, 3-phenylpropyl alkanoates such as 3-(4-hydroxyphenyl)propyl oleate and 3-(3,4-dimethoxyphenyl)propyl oleate, were obtained by C. antarctica lipase-catalyzed transesterification of fatty acid methyl esters with the corresponding 3-phenylpropan-1-ols in high yield, as well.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号