首页 | 本学科首页   官方微博 | 高级检索  
     


Effects of open- and closed-system temperature changes on blood O2-binding characteristics of Atlantic bluefin tuna (Thunnus thynnus)
Authors:R. W. Brill  P. G. Bushnell
Affiliation:(1) Cooperative Marine Education and Research Program, NOAA Fisheries, Northeast Fisheries Science Center, Virginia Institute of Marine Science, PO Box 1346, Gloucester Point, Virginia 23062, USA;(2) Department of Biological Sciences, Indiana University South Bend, PO Box 7111, South Bend, Indiana 46634, USA
Abstract:We investigated the effects of open- and closed-system temperature changes on the O2 affinity of Atlantic bluefin tuna (Thunnus thynnus) blood using in vitro methods essentially identical to those previously employed on tropical tuna species. Bluefin tuna blood has a general O2 affinity (P 50 = 2.6–3.1 kPa or 19–23 mm Hg at 0.5% CO2) similar to that of skipjack tuna, yellowfin tuna, and kawakawa blood (P 50 = 2.8–3.1 kPa at 0.5% CO2) but significantly above that of bigeye tuna blood (P 50 = 1.6–2.0 kPa at 0.5% CO2). We therefore hypothesize that bluefin tuna are less tolerant of hypoxia than bigeye tuna. Further, we found the P 50 of bluefin tuna blood to be slightly reduced by a 10°C open-system temperature increase (e.g., from 4.83 kPa at 15°C to 3.95 kPa at 25°C) and to be completely unaffected by a 10°C closed-system temperature change. Bluefin tuna blood, therefore, had a significantly reduced Bohr effect when subjected to the inevitable changes in P CO 2 and plasma pH that accompany closed-system temperature shifts (0.04–0.09 Δlog P50ΔpH−1) compared with the effects of changes in plasma pH accomplished by changing P CO 2 alone (0.81–0.94 Δlog P50 Δ pH−1). This response is similar to that of skipjack tuna blood, but different from yellowfin or bigeye tuna blood. During closed-system temperature changes at oxygen levels above P 50, however, bluefin tuna blood showed a reversed temperature effect (i.e., P O 2 decreased in response to an increase in temperature). Unlike in other tuna species, temperature effects on O2 affinity of bluefin tuna whole blood were similar to those previously reported for hemoglobin solutions, suggesting that red cell-mediated ligand changes are not involved.
Keywords:Cardiorespiratory  Fish  Hemoglobin  Hypoxia  Pelagic  Metabolic rate  Oxygen affinity  Scrombridae
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号