Effect of antioxidants, citrate, and cryoprotectants on protein denaturation and texture of frozen cod (Gadus morhua) |
| |
Authors: | Badii Farah Howell Nazlin K |
| |
Affiliation: | School of Biomedical and Life Sciences, University of Surrey, Guildford, Surrey, United Kingdom GU2 7XH. |
| |
Abstract: | To investigate the role of antioxidants and cryoprotectants in minimizing protein denaturation in frozen lean fish, cod fillets were treated with either antioxidants (vitamin C (500 mg kg(-1)) or vitamin C (250 mg kg(-1)) + vitamin E (250 mg kg(-1))), antioxidants (vitamins C + E 250 mg kg(-1)each) with citrate (100 mg kg(-1)), cryoprotectants (4% (w/w) sucrose + 4% (w/w) sorbitol), or a mixture of antioxidants (vitamins C + E 250 mg kg(1)), citrate (100 mg kg(-1)), and cryoprotectants (sucrose 40 g kg(-1) + sorbitol 40 g kg(-1)). Untreated and treated fish samples were stored at -10 degrees C; cod fillets stored at -30 degrees C were used as a control. Stored frozen samples were analyzed at intervals for up to 210 days for changes in protein extractability, thermodynamic parameters (transition temperature T(m) and enthalpy DeltaH), structure by FT-Raman spectroscopy, and rheological properties by large and small deformation tests. Results indicated that protein denaturation and texture changes were minimized in the presence of cryoprotectants, as well as in the presence of antioxidants with citrate, antioxidants alone, or the mixture of antioxidants, citrate, and cryoprotectants. In the presence of increased formaldehyde levels in fish treated with vitamin C, toughening was still lower compared to that of the -10 degrees C control due to the antioxidant property of vitamin C. Thus, ice crystal formation and lipid oxidation products are the major factors that cause protein denaturation in lean frozen fish, and antioxidants in addition to cryoprotectants can be used to minimize toughness. |
| |
Keywords: | |
本文献已被 PubMed 等数据库收录! |
|