首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Ecoenzymatic stoichiometry reveals phosphorus addition alleviates microbial nutrient limitation and promotes soil carbon sequestration in agricultural ecosystems
Authors:Wang  Xiangxiang  Cui  Yongxing  Wang  Yuhan  Duan  Chengjiao  Niu  Yinan  Sun  Ruxiao  Shen  Yufang  Guo  Xuetao  Fang  Linchuan
Institution:1.State Key Laboratory of Soil Erosion and Dryland Farming On the Loess Plateau, Northwest A&F University, Yangling, 712100, Shaanxi, China
;2.College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, Shaanxi, China
;3.Institute of Soil and Water Conservation, Ministry of Water Resources, Chinese Academy of Sciences, Yangling, 712100, China
;4.University of Chinese Academy of Sciences, Beijing, 100049, China
;5.CAS Center for Excellence in Quaternary Science and Global Change, Xi’an, 710061, China
;
Abstract:Purpose

Variation in soil microbial metabolism remains highly uncertain in predicting soil carbon (C) sequestration, and is particularly and poorly understood in agroecosystem with high soil phosphorus (P) variability.

Materials and methods

This study quantified metabolic limitation of microbes and their association with carbon use efficiency (CUE) via extracellular enzymatic stoichiometry and biogeochemical equilibrium models in field experiment employing five inorganic P gradients (0, 75, 150, 225, and 300 kg P ha?1) in farmland used to grow peas.

Results and discussion

Results showed P fertilization significantly increased soil Olsen-P and NO3?-N contents, and enzyme activities (β-1,4-glucosidase and β-D-cellobiosidase) were significantly affected by P fertilization. It indicated that P fertilization significantly decreased microbial P limitation due to the increase of soil available P. Interestingly, P application also significantly decreased microbial nitrogen (N) limitation, a phenomenon primarily attributable to increasing NO3?-N content via increasing biological N fixation within the pea field. Furthermore, P fertilization increased microbial CUE because the reduction in microbial N and P limitation leads to higher C allocation to microbial growth. Partial least squares path modeling (PLS-PM) further revealed that the reduction of microbial metabolic limitation is conducive to soil C sequestration.

Conclusions

Our study revealed that P application in agroecosystem can alleviate not only microbial P limitation but also N limitation, which further reduces soil C loss via increasing microbial CUE. This study provides important insight into better understanding the mechanisms whereby fertilization mediates soil C cycling driven by microbial metabolism in agricultural ecosystems.

Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号