首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   35篇
  免费   6篇
  国内免费   1篇
农学   1篇
  1篇
综合类   15篇
农作物   3篇
水产渔业   6篇
畜牧兽医   1篇
园艺   1篇
植物保护   14篇
  2021年   1篇
  2018年   2篇
  2015年   1篇
  2014年   4篇
  2013年   2篇
  2012年   2篇
  2011年   4篇
  2010年   3篇
  2009年   1篇
  2008年   3篇
  2007年   1篇
  2006年   5篇
  2005年   4篇
  2004年   1篇
  2002年   2篇
  2001年   3篇
  2000年   1篇
  1999年   2篇
排序方式: 共有42条查询结果,搜索用时 609 毫秒
1.
开展了除虫菊素、鱼藤酮和苦参碱3种植物源农药对茶大灰象甲的室内药效试验。结果表明:药后1 d、3d和5 d,1.5%除虫菊素水乳剂500倍液对茶大灰象甲的校正死亡率分别为97.22%、100%和100%,与对照药剂2.5%联苯菊酯乳油1500倍液差异不显著。而7.5%鱼藤酮乳油750倍液和1.3%苦参碱水剂1500倍液药后1d、3d和5 d的校正死亡率均不高于50%,这2种植物源农药对茶大灰象甲的室内药效效果均较差。  相似文献   
2.
用非注山毛豆叶丙酮提取物或鱼藤酮点滴处理菜粉蝶幼虫,出现畸形幼虫和畸形蛹,对畸形幼虫和畸形蛹的真皮细胞和内外表皮分别进行了超显微结构观察,发现鱼藤酮及其类似物影响昆虫旧表皮的分解和新表皮的合成是导致虫体畸形的主要原因,并对畸形蛹体壁的几丁质,粗脂肪,粗蛋白的含量进行测定,结果表明处理组与对照组存在明显的差异。  相似文献   
3.
非洲山毛豆叶片中鱼藤酮含量与提取时间的测定   总被引:1,自引:0,他引:1       下载免费PDF全文
用苯和氯仿作溶剂,采用冷浸法,对紫花非洲山毛豆叶片进行多次提取,测定了非洲山毛豆叶片中鱼藤酮的含量和提取时间.结果表明,紫花非洲山毛豆叶片中w(鱼藤酮)为0.69%.用苯冷浸提取2次,每次提取2d,对鱼藤酮的提取率为66.37%;提取3次,提取率为76.47%.  相似文献   
4.
鱼藤酮原药和制剂的液相色谱分析   总被引:4,自引:0,他引:4  
本文论述了鱼藤酮原药和制剂采用反相色谱柱分离,两元混合流动相洗脱,紫外可变波长检测器检测,外标法定量测定的液相色谱分析方法。测定的线性相关系数为0.9996,原药和制剂测定的变异系数分别为0.18%、0.56%,回收率分别为98.5%~101.0%、98.0%~102.0%。  相似文献   
5.
熊忠华  陈小俊  熊件妹 《江西植保》2011,(4):160-162,164
采用1%阿维·鱼藤新型乳油对柑橘红蜘蛛进行田间药效试验。结果表明,1%阿维·鱼藤新型乳油500、1000和1500倍液3个处理对活动螨态均具优异的杀灭效果,药后1d,500倍液处理组防效显著高于对照药剂200阿维·哒3000倍液处理,二者各为99.70%±0.30%和93.64%±2.29%;药后5d,1%阿维·鱼藤新型乳油500、1000和1500倍液3个处理对活动螨态的防效与对照药剂相当,4者防效均高达94.72%以上。此外,1%阿维·鱼藤新型乳油1500、1000和500倍3个处理均对柑橘红蜘蛛螨卵具一定的杀卵效果,其中500倍处理组的杀卵作用较好,校正杀卵率达80.59%±2.51%。  相似文献   
6.
鱼藤酮-壳聚糖接枝物农药纳米粒子水分散制剂研究   总被引:1,自引:0,他引:1  
通过全天然产物蓖麻油酸酐(RAN)与羧甲基壳聚糖(CMC)的酰化反应,合成了羧甲基壳聚糖接技蓖麻油酸(CMC-g-RA)共聚物。探讨了原料的相对分子质量、 RAN与CMC分子上氨基的物质的量之比、反应温度和溶剂等因素对产物取代度的影响。以CMC-g-RA为载体,通过在中性水中自组装大分子胶束的增溶作用,与植物源农药鱼藤酮(Rot)一起制备了一种新型的农药纳米粒子水分散剂。对其粒径、粒径分布、表面电荷、形态结构和Rot的负载率等物理性能进行了表征,探讨了CMC-g-RA和Rot溶液的浓度对纳米粒子各相关性能的影响。结果表明:所形成的纳米粒子干燥后外观形态呈密实光滑的球状,粒径在200~500 nm之间,具有较窄的粒径分布,表面带负电荷;该纳米粒子的Zeta电位值随CMC-g-RA和Rot质量浓度的升高而增大,在-40~-70 mV之间;Rot的负载率在20%~68%范围内。研究表明,改变Rot和CMC-g-RA溶液的质量浓度配比,可调节纳米粒子的物理性能;控制农药的负载率,有助于调控该新型制剂速效与缓释之间的关系。  相似文献   
7.
In two experiments, the effects of succinate and NADH(reduced nicotinamide adenine dinucleotide) on metmyoglobin reductase activity and electron transport chain-linked metmyoglobin reduction were investigated and compared. In experiment 1, metmyoglobin(MetMb), substrate and inhibitors were incubated with mitochondria. Comparsion of the effects of succinate and NADH on MetMb reduction was investigated. The MetMb percentage in sample treated with 8 mol L-1 succinate decreased by about 69% after 3 h incubation, and the effect was inhibited by the addition of 10 mol L-1 electron transfer chain complex II inhibitor malonic acid; the MetMb percentage in samples treated with 2 mol L-1 NADH decreased by 56% and the effect was inhibited by the addition of 0.02 mol L-1 electron transport chain complex I inhibitor rotenone. These results indicated that electron transport chain played an important role in MetMb reduction. Both complex II and complex I take part in the MetMb reduction in mitochondria through different pathways. NADH-MetMb reduction system was less stable than succinateMetMb system. In experiment 2, the beef longissimus dorsi muscle was blended with different concentrations of succinate or NADH. Enhancing patties with higher concentration of succinate or NADH improved colour stability in vacuum packaged samples(P〈0.05). These results verified that mitochondria electron transport chain is related to the MetMb reduction in meat system.  相似文献   
8.
Rotenone sampling is the most efficient method for assessing the fish assemblage structure and species abundance of low conductivity Amazonian streams. It does, however, cause fish mortality and disturb aquatic ecosystem. The aim of this study was to search for a non‐destructive alternative. The efficiency of electrofishing was compared against complete removal using rotenone. This procedure was repeated in 12 streams dispersed throughout French Guiana to test for environmental and biological effects such as water conductivity, stream depth, fish family membership and body size. This study revealed that the efficiency of electrofishing was influenced by stream conductivity and stream depth, but not by fish family or body size. The electrofishing method might constitute an efficient alternative to using rotenone in smaller streams (below 25‐cm depth and above 43 μS cm?1), whereas in deeper and/or slightly conductive streams, rotenone still remains the only method able to provide a quick and comprehensive picture of the fish assemblage.  相似文献   
9.
航天搭载非洲山毛豆高鱼藤酮含量植株的筛选   总被引:1,自引:0,他引:1  
 【目的】非洲山毛豆(Tephrosia vogelii Hook)植株原始品种鱼藤酮含量较低,其种子经航天搭载返回地面育苗后,筛选出高鱼藤酮含量的非洲山毛豆植株。【方法】筛选后的非洲山毛豆种子经卫星搭载于太空航行15天,返回地面后种植。利用HPLC和HPLC-MS对150株非洲山毛豆叶片干粉中的鱼藤酮定性和定量分析。【结果】叶片干粉中鱼藤酮含量高于2.00%的非洲山毛豆种质2株,含量在1.00%—2.00%的种质8株。在参试的非洲山毛豆种质资源中,原始品种的鱼藤酮含量仅0.4614%,21号植株的鱼藤酮含量最高,达2.3172%,比原始品种含量提高了4.02倍。【结论】航天搭载可以使非洲山毛豆种子产生变异,其植株叶片内鱼藤酮含量产生变化,筛选出的高鱼藤酮含量的非洲山毛豆特异资源,经过品质遗传改良或大量繁育后可成为提取鱼藤酮的重要材料。  相似文献   
10.
A range of cultured cells of invertebrate and vertebrate origin was grown in the presence of a number of phytochemical pesticides to test the effect of the latter on cell proliferation. The main observation was that azadirachtin was a potent inhibitor of insect cell replication, with an EC50 of 1.5 x 10(10) M against Spodoptera cells and of 6.3 x 10(9) M against Aedes albopictus cells, whilst affecting mammalian cells only at high concentrations (> 10(-4) M). As expected, the other phytochemical pesticides, except for rotenone, had little effect on the growth of the cultured cells. Rotenone was highly effective in inhibiting the growth of insect cells (EC50:10(-8) M) but slightly less toxic towards mammalian cells (EC50:2 x 10(-7) M). Neem terpenoids other than azadirachtin and those very similar in structure significantly inhibited growth of the cell cultures, but to a lesser degree. The major neem seed terpenoids, nimbin and salannin, for example, inhibited insect cell growth by 23% and 15%, respectively.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号